A261805 Decimal expansion of M_8, the 8th Madelung constant (negated).
2, 0, 5, 2, 4, 6, 6, 8, 2, 7, 2, 6, 9, 2, 7, 1, 2, 2, 8, 1, 7, 6, 3, 3, 7, 7, 9, 9, 1, 7, 3, 3, 8, 3, 9, 9, 1, 7, 0, 8, 3, 7, 7, 5, 2, 9, 9, 6, 5, 5, 8, 2, 1, 9, 3, 2, 3, 7, 3, 2, 4, 5, 7, 7, 5, 3, 4, 9, 9, 4, 1, 3, 2, 8, 7, 5, 2, 7, 0, 6, 1, 4, 6, 9, 8, 5, 1, 9, 8, 8, 3, 9, 4, 1, 3, 1, 7, 5, 1, 0, 8, 8, 1
Offset: 1
Examples
-2.052466827269271228176337799173383991708377529965582...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Eric Weisstein's MathWorld, Madelung Constants
Programs
-
Mathematica
M8 = (15/(4*Pi^3))*(8*Sqrt[2] - 1)*Zeta[1/2]*Zeta[7/2]; RealDigits[M8, 10, 103] // First
-
PARI
th4(x)=1+2*sumalt(n=1, (-1)^n*x^n^2) intnum(x=0, [oo, 1], (th4(exp(-x))^8-1)/sqrt(Pi*x)) \\ Charles R Greathouse IV, Jun 06 2016
Formula
M_8 = (15/(4*Pi^3))*(8*sqrt(2) - 1)*zeta(1/2)*zeta(7/2).