A261813 Decimal expansion of (Pi/4)^N*(N^N/N!)^2 for N = 3.
9, 8, 1, 0, 5, 7, 9, 7, 3, 0, 8, 7, 6, 1, 1, 4, 9, 7, 7, 3, 9, 6, 8, 0, 2, 8, 1, 4, 2, 0, 0, 0, 5, 0, 8, 2, 5, 7, 0, 4, 0, 9, 5, 2, 1, 0, 2, 9, 9, 5, 8, 4, 8, 5, 6, 3, 5, 0, 4, 2, 0, 2, 5, 9, 4, 0, 7, 4, 9, 2, 1, 4, 1, 8, 5, 4, 3, 8, 3, 5, 5, 0, 9, 4, 8, 8, 3, 8, 9, 9, 8, 5, 9, 7, 0, 0, 6, 9, 5, 9, 5, 1, 3, 4, 3
Offset: 1
Examples
9.8105797308761149773968028142000508257040952102995848563504202594...
References
- B. Mazur, Algebraic Numbers, in The Princeton Companion to Mathematics, Editor T. Gowers, Princeton University Press, 2008, Section IV.1, page 330.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
n = 3; First@ RealDigits[N[(Pi/4)^n (n^n/n!)^2, 120]] (* Michael De Vlieger, Nov 19 2015 *)
-
PARI
N=3;(Pi/4)^N*(N^N/N!)^2
Formula
Equals 81*Pi^3/256.
Comments