cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261819 Encoded symmetrical antidiagonal square binary matrices with either 1 or 2 ones.

This page as a plain text file.
%I A261819 #24 Nov 30 2016 22:10:02
%S A261819 1,6,16,40,384,576,4096,10240,17408,393216,589824,1081344,16777216,
%T A261819 41943040,71303168,136314880,6442450944,9663676416,17716740096,
%U A261819 34628173824,1099511627776
%N A261819 Encoded symmetrical antidiagonal square binary matrices with either 1 or 2 ones.
%C A261819 We encode square matrices that have zeros everywhere except the antidiagonal where the antidiagonal is symmetric with either 1 or 2 ones in it. We do this by reading off digits antidiagonally to get a binary number and then convert the number to a base 10 number.
%F A261819 a(n) = A261195(2^n).
%F A261819 a(n) = 2^(A000217(floor(sqrt(4*n + 1)) - 1)) * (((A262769(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - 2*A002260(+1))/2)) * (1+(-1)^(floor(sqrt(4*n + 1))))/2) + ((A262777(floor(n/2)) * 2^((floor(sqrt(4*n + 1)) - A158405(+1))/2)) * (1-(-1)^(floor(sqrt(4*n + 1))))/2)).
%e A261819 The 3 X 3 matrix
%e A261819 0 0 0
%e A261819 0 1 0
%e A261819 0 0 0
%e A261819 gives 000010000. Writing this as a base 10 number gives a(2)=16.
%e A261819 The 4 X 4 matrix
%e A261819 0 0 0 0
%e A261819 0 0 1 0
%e A261819 0 1 0 0
%e A261819 0 0 0 0
%e A261819 gives 0000000110000000. Writing this as a base 10 number gives a(4)=384.
%e A261819 The 5 X 5 matrix
%e A261819 0 0 0 0 0
%e A261819 0 0 0 1 0
%e A261819 0 0 0 0 0
%e A261819 0 1 0 0 0
%e A261819 0 0 0 0 0
%e A261819 gives 0000000000010100000000000. Writing this as a base 10 number gives a(7)=10240.
%K A261819 nonn
%O A261819 0,2
%A A261819 _Eric Werley_, Sep 24 2015