This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261828 #17 Feb 25 2017 03:00:44 %S A261828 1,1,15,832,14791,2008546,55380132,2868333476,511805155863, %T A261828 31512728488918,2638310862477610,926651539894899446, %U A261828 74254761492776175196,6851495812540548188072,9541620342114654822145972,611287722968440282212322702,58354641005988089624088037623 %N A261828 Number of compositions of 2n into distinct parts where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur at least once in the composition. %H A261828 Alois P. Heinz, <a href="/A261828/b261828.txt">Table of n, a(n) for n = 0..150</a> %F A261828 a(n) = A261836(2n,n). %p A261828 b:= proc(n, i, p, k) option remember; %p A261828 `if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p, k)+ %p A261828 `if`(i>n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) %p A261828 end: %p A261828 a:= n-> add(b(2*n$2, 0, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A261828 seq(a(n), n=0..20); %t A261828 b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2<n, 0, If[n==0, p!, b[n, i - 1, p, k] + If[i>n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; a[n_] := Sum[b[2*n, 2*n, 0, n-i]*(-1)^i*Binomial[n, i], {i, 0, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 25 2017, translated from Maple *) %Y A261828 Cf. A261784, A261836. %K A261828 nonn %O A261828 0,3 %A A261828 _Alois P. Heinz_, Sep 02 2015