This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261853 #6 Sep 03 2015 11:49:39 %S A261853 1,10,15,40,183,266,549,1056,4421,5850,12245,20644,39809,141818, %T A261853 195421,370808,633379,1126518,1870135,6531964,8547045,16324018, %U A261853 26458275,46612364,73200021,127916094,385244951,518151276,939317459,1516648678,2564211485,4008404972 %N A261853 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition. %C A261853 Also number of matrices with two rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct. %H A261853 Alois P. Heinz, <a href="/A261853/b261853.txt">Table of n, a(n) for n = 2..2500</a> %F A261853 a(n) = A261836(n,2). %p A261853 b:= proc(n, i, p, k) option remember; %p A261853 `if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p, k)+ %p A261853 `if`(i>n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) %p A261853 end: %p A261853 a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): %p A261853 seq(a(n), n=2..40); %Y A261853 Column k=2 of A261836. %K A261853 nonn %O A261853 2,2 %A A261853 _Alois P. Heinz_, Sep 03 2015