This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261857 #4 Sep 03 2015 14:48:59 %S A261857 403,3090,26523,178456,4328268,11655792,55380132,203857488,908020203, %T A261857 15089942326,32659354659,119798424120,366557119686,1229877368940, %U A261857 4069268482608,64750089252368,122070519766665,408439013722194,1090232738714433,3275624230408044 %N A261857 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition. %C A261857 Also number of matrices with six rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct. %H A261857 Alois P. Heinz, <a href="/A261857/b261857.txt">Table of n, a(n) for n = 6..2500</a> %F A261857 a(n) = A261836(n,6). %p A261857 b:= proc(n, i, p, k) option remember; %p A261857 `if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p, k)+ %p A261857 `if`(i>n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) %p A261857 end: %p A261857 a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(6): %p A261857 seq(a(n), n=6..30); %Y A261857 Column k=6 of A261836. %K A261857 nonn %O A261857 6,1 %A A261857 _Alois P. Heinz_, Sep 03 2015