This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261858 #4 Sep 03 2015 15:47:50 %S A261858 757,13671,148638,5623044,19334910,115231480,522931570,2868333476, %T A261858 63481817735,156363633615,661651830728,2317522429544,8940138012274, %U A261858 34465610055870,703252581037436,1456494080466446,5428978793488341,16082092961535517,53836540488601696 %N A261858 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition. %C A261858 Also number of matrices with seven rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct. %H A261858 Alois P. Heinz, <a href="/A261858/b261858.txt">Table of n, a(n) for n = 7..2500</a> %F A261858 a(n) = A261836(n,7). %p A261858 b:= proc(n, i, p, k) option remember; %p A261858 `if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p, k)+ %p A261858 `if`(i>n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) %p A261858 end: %p A261858 a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(7): %p A261858 seq(a(n), n=7..30); %Y A261858 Column k=7 of A261836. %K A261858 nonn %O A261858 7,1 %A A261858 _Alois P. Heinz_, Sep 03 2015