cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261875 Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.

This page as a plain text file.
%I A261875 #7 Sep 05 2015 14:08:56
%S A261875 2,6,8,1,1,2,8,1,4,7,2,6,7,1,1,2,2,3,8,5,7,7,3,2,8,7,8,3,7,0,3,9,3,7,
%T A261875 0,9,3,5,4,1,7,5,3,4,7,2,0,1,1,6,1,6,6,3,5,2,7,4,9,7,0,2,5,8,8,6,4,0,
%U A261875 2,8,4,0,3,6,5,1,6,5,3,4,5,0,6,7,2,3,9,2,0,8,5,5,8,7,7,5,9,9,1,1
%N A261875 Decimal expansion of the coefficient 'gamma' (see formula) appearing in Otter's result concerning the asymptotics of T_n, the number of non-isomorphic rooted trees of order n.
%D A261875 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 296.
%F A261875 Lim_{n->infinity} T_n*n^(3/2)/alpha^n = (beta/(2 Pi))^(1/3) = (1/(4 Pi alpha))^(1/2)*gamma, where alpha is A051491 and beta is A086308.
%F A261875 gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3)*sqrt(alpha).
%e A261875 2.68112814726711223857732878370393709354175347201161663527497...
%t A261875 digits = 100; max = 250; Clear[s, a]; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; beta = (1+Sum[APrime[alpha^(-k)]/alpha^k, {k, 2, max}])^(3/2)/Sqrt[2*Pi]; gamma = 2^(2/3)*Pi^(1/6)*beta^(1/3) * Sqrt[alpha]; RealDigits[gamma, 10, digits] // First
%Y A261875 Cf. A000055, A000081, A051491, A086308, A187770.
%K A261875 cons,nonn
%O A261875 1,1
%A A261875 _Jean-François Alcover_, Sep 04 2015