This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261876 #39 May 01 2016 16:20:58 %S A261876 1,3,2,1,4,5,1,3,5,5,4,2,4,7,2,1,9,9,4,4,7,5,1,5,6,12,7,1,10,9,2,3,10, %T A261876 9,7,5,4,11,3,5,14,10,4,4,10,9,3,2,8,17,10,4,11,18,6,7,9,6,11,2,10,15, %U A261876 4,1,15,17,4,9,13,10 %N A261876 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (5*x^2+7*y^2+9*z^2)*y*z a square, where x,y,z,w are nonnegative integers with z > 0. %C A261876 Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 23, 647, 863). %C A261876 (ii) For each triple (a,b,c) = (1,8,20), (3,5,15), (6,14,4), (7,29,5), (18,38,18), (39,81,51), (42,98,14), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x*y*(a*x^2+b*y^2+c*z^2) is a square. %C A261876 For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723. %H A261876 Zhi-Wei Sun, <a href="/A261876/b261876.txt">Table of n, a(n) for n = 1..10000</a> %H A261876 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016. %H A261876 Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;852b9c4a.1604">Refine Lagrange's four-square theorem</a>, a message to Number Theory List, April 26, 2016. %e A261876 a(4) = 1 since 4 = 0^2 + 0^2 + 2^2 + 0^2 with 2 > 0 and (5*0^2+7*0^2+9*2^2)*0*2 = 0^2. %e A261876 a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 1 > 0 and (5*2^2+7*1^2+9*1^2)*1*1 = 6^2. %e A261876 a(23) = 1 since 23 = 2^2 + 1^2 + 3^2 + 3^2 with 3 > 0 and (5*2^2+7*1^2+9*3^2)*1*3 = 18^2. %e A261876 a(647) = 1 since 647 = 13^2 + 1^2 + 6^2 + 21^2 with 6 > 0 and (5*13^2+7*1^2+9*6^2)*1*6 = 84^2. %e A261876 a(863) = 1 since 863 = 1^2 + 23^2 + 18^2 + 3^2 with 18 > 0 and (5*1^2+7*23^2+9*18^2)*23*18 = 1656^2. %t A261876 SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] %t A261876 Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*z(5x^2+7y^2+9z^2)],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,1,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,70}] %Y A261876 Cf. A000118, A000290, A260625, A262357, A267121, A268507, A269400, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351. %K A261876 nonn %O A261876 1,2 %A A261876 _Zhi-Wei Sun_, May 01 2016