A261993 Number of distinct fractional parts of the numbers 1/(prime(j)-1)+...+1/(prime(k)-1) with 1 <= j <= k <= n, where the fractional part of x is given by x - floor(x).
1, 2, 4, 7, 11, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483, 1538, 1594, 1651, 1709, 1768
Offset: 1
Keywords
Examples
a(3) = 4 since 1/(prime(1)-1) = 1, 1/(prime(2)-1) = 1/2, 1/(prime(3)-1) = 1/4 and 1/(prime(2)-1)+1/(prime(3)-1) = 1/2+1/4 = 3/4 have pairwise distinct fractional parts. a(6) = 15 since 1/(prime(1)-1) and those 1/(prime(j)-1)+...+1/(prime(k)-1) with 1 < j <= k <= 6 and (j,k) not equal to (2,6), have pairwise distinct fractional parts, but sum_{i=2..6}1/(prime(i)-1) = 1/(3-1)+1/(5-1)+1/(7-1)+1/(11-1)+1/(13-1) = 11/10 and 1/(prime(5)-1) = 1/10 have the same fractional part.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1200
- Zhi-Wei Sun, A representation problem involving unit fractions, a message to Number Theory Mailing List, Sept. 9, 2015.
Programs
-
Mathematica
frac[x_]:=x-Floor[x] u[0]:=0 u[n_]:=u[n-1]+1/(Prime[n]-1) S[n_]:=Table[frac[u[n]-u[m-1]],{m,1,n}] T[1]:=S[1] T[n_]:=Union[T[n-1],S[n]] Do[Print[n," ",Length[T[n]]],{n,1,60}]
Comments