cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261880 Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.

This page as a plain text file.
%I A261880 #34 Aug 08 2016 17:30:13
%S A261880 1,-1,-2,1,2,4,-2,-3,-5,-9,5,7,10,15,24,-16,-21,-28,-38,-53,-77,61,77,
%T A261880 98,126,164,217,294,-272,-333,-410,-508,-634,-798,-1015,-1309,1385,
%U A261880 1657,1990,2400,2908,3542,4340,5355,6664
%N A261880 Array of higher-order differences of the sequence (-1)^n*A000111(n) read by downward antidiagonals.
%C A261880 Difference array of (-1)^n*A000111(n):
%C A261880 1, -1, 1, -2, 5, ...
%C A261880 -2, 2, -3, 7,...
%C A261880 4, -5, 10, ...
%C A261880 -9, 15, ...
%C A261880 24, ... .
%C A261880 First column:(-1)^n*A000667(n).
%C A261880 Antidiagonal sums: b(n) =  1, -3, 7, -19, 61, -233, 1037, -5279, 30241, ..., i.e., row sums of the triangle.
%C A261880 Any triangle with entries T(n, m) built from some sequence in column m=0, and the recurrence T(n, m) = T(n, m-1) - T(n-1, m-1) for m >= 1, has the property that the new triangle t(n, m) = T(n+1, m+1) - T(n+1, m), 0 <= m <= n, equals -T(n, m). See the question in the example. - _Wolfdieter Lang_, Aug 08 2016
%F A261880 Recurrence: T(n, 0) = (-1)^n*A000111(n), n >= 0. T(n, m) = T(n, m-1) - T(n-1, m-1), m >= 1. (from the fact that the differences of the rows, starting with n = 1 produce the negative of the triangle. See the example and a comment). - _Wolfdieter Lang_, Aug 08 2016
%e A261880 The triangle T(n, m) begins:
%e A261880 n\m  0   1   2   3   4   5 ...
%e A261880 0:   1
%e A261880 1:  -1  -2
%e A261880 2:   1   2   4
%e A261880 3:  -2  -3  -5  -9
%e A261880 4:   5   7  10  15  24,
%e A261880 5: -16 -21 -28 -38 -53 -77
%e A261880 ...
%e A261880 Triangle of differences of the row entries of the preceding triangle starting with row n=1:
%e A261880 n\m  0   1    2   3   4 ...
%e A261880 0:  -1
%e A261880 1:   1   2
%e A261880 2:  -1  -2   -4
%e A261880 3:   2   3    5   9
%e A261880 4:  -5  -7  -10 -15 -24
%e A261880 ... .
%e A261880 This is the negative of the first triangle. Are there other sequences with the same property?
%Y A261880 Cf. A000111, A000667, A062162, A227862, A239005.
%K A261880 sign,tabl
%O A261880 0,3
%A A261880 _Paul Curtz_, Jul 10 2016
%E A261880 Edited by _Wolfdieter Lang_, Aug 08 2016