cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261881 Minimal nested palindromic primes with seed 0.

This page as a plain text file.
%I A261881 #14 Sep 29 2015 12:33:08
%S A261881 0,101,31013,3310133,933101339,1093310133901,30109331013390103,
%T A261881 333010933101339010333,33330109331013390103333,
%U A261881 993333010933101339010333399,104993333010933101339010333399401,7810499333301093310133901033339940187
%N A261881 Minimal nested palindromic primes with seed 0.
%C A261881 Let s be a palindrome and put a(1) = s.  Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle.  Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
%C A261881 Guide to related sequences:
%C A261881 seed  sequence
%C A261881 0     A261881
%C A261881 1     A261818
%C A261881 2     A053600
%C A261881 3     A082563
%C A261881 4     A261821
%C A261881 5     A261822
%C A261881 6     A261823
%C A261881 7     A261824
%C A261881 8     A261825
%C A261881 9     A261826
%C A261881 000   A262531
%C A261881 0^5   A262532
%C A261881 0^7   A262533
%C A261881 0^9   A260250
%C A261881 010   A260459
%C A261881 111   A261820
%C A261881 1^5   A262497
%C A261881 1^7   A262498
%C A261881 1^9   A262499
%H A261881 Clark Kimberling, <a href="/A261881/b261881.txt">Table of n, a(n) for n = 1..300</a>
%e A261881 As a triangle:
%e A261881 ........0
%e A261881 .......101
%e A261881 ......31013
%e A261881 .....3310133
%e A261881 ....933101339
%e A261881 ..1093310133901
%e A261881 30109331013390103
%t A261881 s = {0}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
%t A261881 (* _Peter J. C. Moses_, Sep 01 2015 *)
%Y A261881 Cf. A261818.
%K A261881 nonn,easy,base
%O A261881 1,2
%A A261881 _Clark Kimberling_, Sep 23 2015