This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261895 #19 Feb 24 2021 02:48:19 %S A261895 2,2,5,6,5,2,9,1,4,2 %N A261895 Decimal expansion of the lower limit of A162795(i)/i^2. %C A261895 Sequence suggested by _Omar E. Pol_. %C A261895 Similar to the constant mentioned in the Applegate-Pol-Sloane article, Section 5, the fractal-like structure. It is also mentioned in A139250 and A170927. %C A261895 It appears that this sequence is a quarter of A261313 and half of A195853. %D A261895 D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191 %H A261895 David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at <a href="http://arxiv.org/abs/1004.3036">arXiv:1004.3036v2</a>, [math.CO], 2010. %H A261895 Steven R. Finch, <a href="/A139250/a139250_1.pdf">Toothpicks and Live Cells</a>, July 21, 2015. [Cached copy, with permission of the author] %H A261895 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %e A261895 0.2256529142... %t A261895 T = 1; t[0] = 0; t[1] = 1; lst = {1}; %t A261895 Do[twon = 2^n; Tmin = 1; imin = 1; %t A261895 Do[If[i == twon, t[i] = twon, %t A261895 t[i] = 2*t[i - twon] + t[i - twon + 1]; %t A261895 If[OddQ[i], T = T + t[i]; %t A261895 Ttest = T/(i*i)]; %t A261895 If[ Ttest<imin, Tmin=Ttest; imin=i ]], %t A261895 {i, twon, 2*twon - 1}]; %t A261895 AppendTo[lst, imin], %t A261895 {n, 1, 15}]; %t A261895 lst %t A261895 N[Tmin, 10] %Y A261895 Cf. A139250, A147562, A162795, A170927, A195853, A260239, A261313, A261896. %K A261895 nonn,cons,hard,more %O A261895 0,1 %A A261895 _Robert Price_, Sep 05 2015