This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261896 #15 Feb 24 2021 02:48:19 %S A261896 3,5,11,25,43,89,179,361,727,1459,2921,5843,11689,23383,46769,93543, %T A261896 187093,374193,748391,1496785,2993575,5987157,11974321,23948647, %U A261896 47897299,95794607,191589221,383178449,766356903,1532713827,3065427663,6130855333,12261710675,24523421357,49046842723 %N A261896 Consider the 2^n values of A162795(i)/i^2 for 2^n <= i < 2^(n+1); a(n) = value of i where this quantity is minimized. %C A261896 Sequence suggested by _Omar E. Pol_. %C A261896 Note that all values in this sequence are odd and that a(n) is approximately 2*a(n-1). %D A261896 D. Applegate, O. E. Pol and N. J. A. Sloane, The toothpick sequence and other sequences from cellular automata, Congressus Numerantium, v. 206 (2010) 157-191. %H A261896 D. Applegate, O. E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The toothpick sequence and other sequences from cellular automata</a>; also available at <a href="http://arxiv.org/abs/1004.3036">arXiv:1004.3036v2</a>, [math.CO], 2010. %H A261896 Steven R. Finch, <a href="/A139250/a139250_1.pdf">Toothpicks and Live Cells</a>, July 21, 2015. [Cached copy, with permission of the author] %H A261896 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %t A261896 T = 1; t[0] = 0; t[1] = 1; lst = {1}; %t A261896 Do[twon = 2^n; Tmin = 1; imin = 1; %t A261896 Do[If[i==twon, t[i]=twon, %t A261896 t[i]=2*t[i-twon]+t[i-twon+1]; %t A261896 If[OddQ[i], T=T+t[i]; %t A261896 Ttest=T/(i*i)]; %t A261896 If[Ttest<Tmin, Tmin=Ttest; imin=i ]], %t A261896 {i, twon, 2*twon - 1}]; %t A261896 AppendTo[lst, imin], %t A261896 {n, 1, 15}]; %t A261896 lst %t A261896 N[Tmin, 10] %Y A261896 Cf. A139250, A147562, A162795, A170927, A195853, A260239, A261313, A261895. %K A261896 nonn %O A261896 0,1 %A A261896 _Robert Price_, Sep 05 2015