This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261897 #13 Sep 08 2015 02:24:47 %S A261897 1,1,1,0,2,1,0,2,3,1,0,2,5,4,1,0,0,7,9,5,1,0,0,7,16,14,6,1,0,0,7,23, %T A261897 30,20,7,1,0,0,7,30,53,50,27,8,1,0,0,7,37,83,103,77,35,9,1,0,0,0,44, %U A261897 120,186,180,112,44,10,1,0,0,0,44,164,306,366,292,156,54,11,1 %N A261897 Triangle read by rows: T(n,k) (1 <= k <= n+1) = number of sequences of length n, dominated by the squares, with entries from [0,k] and largest entry k. %C A261897 A242105 gives the first nonzero terms per row, without repetitions. - _Reinhard Zumkeller_, Sep 06 2015 %H A261897 Reinhard Zumkeller, <a href="/A261897/b261897.txt">Rows n = 0..125 of triangle, flattened</a> %H A261897 L. Haddad and C. Helou, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Helou/helou7.html">Finite Sequences Dominated by the Squares</a>, Journal of Integer Sequences, Volume 18, 2015, Issue 1, Article 15.1.8. %e A261897 Triangle begins: %e A261897 1, %e A261897 1,1, %e A261897 0,2,1, %e A261897 0,2,3,1, %e A261897 0,2,5,4,1, %e A261897 0,0,7,9,5,1, %e A261897 0,0,7,16,14,6,1, %e A261897 0,0,7,23,30,20,7,1, %e A261897 0,0,7,30,53,50,27,8,1, %e A261897 0,0,7,37,83,103,77,35,9,1, %e A261897 0,0,0,44,120,186,180,112,44,10,1, %e A261897 0,0,0,44,164,306,366,292,156,54,11,1, %e A261897 ... %o A261897 (Haskell) %o A261897 a261897 n k = a261897_tabl !! n !! (k-1) %o A261897 a261897_row n = a261897_tabl !! n %o A261897 a261897_tabl = [1] : f 1 0 [1] where %o A261897 f t h xs | t <= (h + 1) ^ 2 = ys : f (t + 1) h ys %o A261897 | otherwise = ys' : f (t + 1) (h + 1) ys' %o A261897 where ys = zipWith (+) ([0] ++ xs) (xs ++ [0]) %o A261897 ys' = zipWith (+) ([0] ++ xs) (us ++ (0:vs) ++ [0]) %o A261897 (us, _:vs) = splitAt h xs %o A261897 -- _Reinhard Zumkeller_, Sep 06 2015 %Y A261897 Cf. A242105, A261930 (row sums). %K A261897 nonn,tabl %O A261897 0,5 %A A261897 _N. J. A. Sloane_, Sep 05 2015