This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261913 #23 Oct 14 2023 11:37:45 %S A261913 1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1, %T A261913 2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2, %U A261913 2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2 %N A261913 The palindromic order of n (defined in Comments). %C A261913 Order 1: palindromes (A002113); %C A261913 Order 2: not order 1 but is the sum of two palindromes (A261907); %C A261913 Order 3: not order 1 or 2, but n - previous_palindrome(n) (i.e., n - A261914(n)) gives a number of order 2 (A261910); %C A261913 Order 4: not order 1, 2, or 3, but subtracting previous_palindrome(previous_palindrome(n)) gives a number of order 2 (A261911); %C A261913 Order 5: not orders 1, 2, 3, or 4 (A261912). %H A261913 N. J. A. Sloane, <a href="/A261913/b261913.txt">Table of n, a(n) for n = 0..20000</a> %F A261913 a(n) = A088601(n). - _R. J. Mathar_, Feb 14 2023 %Y A261913 Cf. A002113, A261423, A261907, A261910, A261911, A261912, A261914. %Y A261913 Closely related to A261675. See also A088601. %K A261913 nonn,base %O A261913 0,11 %A A261913 _N. J. A. Sloane_, Sep 10 2015