This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261923 #19 Sep 21 2023 11:10:20 %S A261923 0,1,2,1,2,2,3,1,2,2,2,3,3,3,3,1,2,2,2,3,2,2,3,3,3,3,3,3,3,3,3,1,2,2, %T A261923 2,3,2,2,3,3,2,2,2,3,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,1,2,2,2,3, %U A261923 2,2,3,3,2,2,2,4,3,2,3,3,2,2,2,4,2,2 %N A261923 Number of steps to reach 0, starting at n, and iteration the map x -> A261922(x). %H A261923 Reinhard Zumkeller, <a href="/A261923/b261923.txt">Table of n, a(n) for n = 0..10000</a> %F A261923 a(A262279(n)) = n. - _Reinhard Zumkeller_, Sep 17 2015 %e A261923 13 -> 4 -> 3 -> 0, which takes 3 steps to reach 0, so a(13)=3. %o A261923 (Haskell) %o A261923 a261923 n = fst $ until ((== 0) . snd) %o A261923 (\(step, x) -> (step + 1, a261922 x)) (0, n) %o A261923 -- _Reinhard Zumkeller_, Sep 17 2015 %o A261923 (PARI) a(n) = if (n==0, 0, my(k=1, x=A261922(n)); while (x, x=A261922(x); k++); k); \\ _Michel Marcus_, Sep 20 2023 %o A261923 (Python) %o A261923 def f(n): b=bin(n)[2:]; return next(k for k in range(2**len(b)) if bin(k)[2:] not in b) %o A261923 def a(n): return 0 if n == 0 else 1 + a(f(n)) %o A261923 print([a(n) for n in range(99)]) # _Michael S. Branicky_, Sep 21 2023 %Y A261923 Cf. A261922, A261461, A262279. %K A261923 nonn %O A261923 0,3 %A A261923 _N. J. A. Sloane_, Sep 17 2015