A261929 a(n) is the number of different pairs (p,q) mod n not of the form (x*y,x+y) mod n for any (x,y).
0, 1, 3, 8, 10, 18, 21, 36, 45, 55, 55, 96, 78, 112, 135, 160, 136, 216, 171, 280, 273, 286, 253, 408, 350, 403, 432, 560, 406, 630, 465, 656, 693, 697, 805, 1008, 666, 874, 975, 1180, 820, 1260, 903, 1408, 1485, 1288, 1081, 1728, 1323, 1675, 1683, 1976, 1378, 2025, 2035, 2352, 2109, 2059, 1711, 2880, 1830, 2356
Offset: 1
Keywords
Examples
a(2) = 1 because only the pair (1,1) mod 2 doesn't exist as result from any (x*y,x+y) mod 2.
Crossrefs
Cf. A261928 (number of pairs that have such a form).
Formula
a(n) = n^2 - A261928(n).