A261950 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable vertex of the triangles of the (n-1)-th generation (this is the "side to vertex" version); for the even n-th generation use the "vertex to vertex" version; a(n) is the number of triangles added in the n-th generation.
1, 3, 9, 12, 30, 18, 45, 27, 66, 33, 81, 42, 102, 48, 117, 57, 138, 63, 153, 72, 174, 78, 189, 87, 210, 93, 225, 102, 246, 108, 261, 117, 282, 123, 297, 132, 318, 138, 333, 147, 354, 153, 369, 162, 390, 168, 405
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
PARI
{e=9; o=3; print1("1, ", o, ", ", e, ", "); for(n=3, 100, if (Mod(n,2)==0, if (Mod(n,4)==0, e=e+21); if (Mod(n,4)==2, e=e+15); print1(e, ", "), if (Mod(n,4)==3, o=o+9); if (Mod(n,4)==1, o=o+6); print1(o, ", ")))}
Formula
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-4)-a(n-6) for n>6.
G.f.: (7*x^6+3*x^5+20*x^4+9*x^3+8*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)).
(End)
Extensions
Typo in data fixed by Colin Barker, Sep 10 2015
Comments