A261951 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable vertex of the triangles of the (n-1)-th generation (this is the "vertex to vertex" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.
1, 3, 9, 12, 24, 24, 39, 27, 54, 33, 69, 42, 84, 54, 99, 57, 114, 63, 129, 72, 144, 84, 159, 87, 174, 93, 189, 102, 204, 114, 219, 117, 234, 123, 249, 132, 264, 144, 279, 147, 294, 153, 309, 162, 324, 174, 339, 177, 354
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Programs
-
PARI
{e=9; o=3; print1("1, ", o, ", ", e, ", "); for(n=3, 100, if (Mod(n,2)==0, e=e+15; print1(e, ", "), if (Mod(n,8)==3, o=o+9); if (Mod(n,8)==5, o=o+12); if (Mod(n,8)==7, o=o+3); if (Mod(n,8)==1, o=o+6); print1(o, ", ")))}
Formula
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>10.
G.f.: (7*x^10+3*x^9+14*x^8+3*x^7+15*x^6+12*x^5+15*x^4+9*x^3+8*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)
Comments