A261954 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "side to vertex" version; a(n) is the number of triangles added in the n-th generation.
1, 3, 3, 6, 12, 15, 21, 18, 30, 27, 39, 30, 48, 39, 57, 42, 66, 51, 75, 54, 84, 63, 93, 66, 102, 75, 111, 78, 120, 87, 129, 90, 138, 99, 147, 102, 156, 111, 165, 114, 174, 123, 183, 126, 192, 135, 201, 138, 210, 147, 219
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
Programs
-
PARI
a=3; print1("1, ", a, ", "); for (n=2, 100, if (Mod(n,4)==0||Mod(n,4)==2, print1(9*(n/2-1)+3, ", "), if (Mod(n,4)==1, a=a+9, a=a+3); print1(a, ", ")))
Formula
a(0) = 1, a(1) = 3; for even n >= 2, a(n) = 9*(n/2-1) + 3 or a(n) = A017197(n/2-1); for odd n >= 3, a(n) = a(n-2) + 9, if mod(n,4) = 1 otherwise a(n) = a(n-2) + 3.
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-4)-a(n-6) for n>6.
G.f.: (7*x^6+6*x^5+8*x^4+3*x^3+2*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)).
(End)
Comments