This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261955 #19 Sep 16 2015 17:13:31 %S A261955 1,3,6,15,12,24,15,33,21,45,39,72,36,78,39,87,45,99,63,126,60,132,63, %T A261955 141,69,153,87,180,84,186,87,195,93,207,111,234,108,240,111,249,117, %U A261955 261,135,288,132,294,135,303,141,315,159 %N A261955 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation. %C A261955 See a comment on V-V and V-S at A249246. %C A261955 There are a total of 16 combinations as shown in the table below: %C A261955 +-------------------------------------------------------+ %C A261955 | Even n-th version V-V S-V V-S S-S | %C A261955 +-------------------------------------------------------+ %C A261955 | Odd n-th version | %C A261955 | V-V A008486 A248969 A261951 A261952 | %C A261955 | S-V A261950 A008486 A008486 A261956 | %C A261955 | V-S A249246 A008486 A008486 A261957 | %C A261955 | S-S A261953 A261954 a(n) A008486 | %C A261955 +-------------------------------------------------------+ %C A261955 Note: V-V = vertex to vertex, S-V = side to vertex, %C A261955 V-S = vertex to side, S-S = side to side. %H A261955 Kival Ngaokrajang, <a href="/A261955/a261955.pdf">Illustration of initial terms</a> %F A261955 Conjectures from _Colin Barker_, Sep 10 2015: (Start) %F A261955 a(n) = a(n-2)+a(n-8)-a(n-10) for n>13. %F A261955 G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)). %F A261955 (End) %o A261955 (PARI) {e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n,2)==0, if (Mod(n,8)==6, e=e+3); if (Mod(n,8)==0, e=e+6); if (Mod(n,8)==2, e=e+18); if (Mod(n,8)==4, e=e-3); Print1(e, ", "), if (Mod(n,8)==7, o=o+9); if (Mod(n,8)==1, o=o+12); if (Mod(n,8)==3, o=o+27); if (Mod(n,8)==5, o=o+6); print1(o, ", ")))} %Y A261955 Cf. A008486, A248969, A249246. %K A261955 nonn %O A261955 0,2 %A A261955 _Kival Ngaokrajang_, Sep 06 2015