This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261958 #26 Oct 12 2015 16:18:20 %S A261958 1,4,12,16,24,32,28,36,32,44,44,56,56,72,60,76,64,84,76,96,88,112,92, %T A261958 116,96,124,108,136,120,152,124,156,128,164,140,176,152,192,156,196, %U A261958 160,204,172,216,184,232,188,236,192,244,204,256,216 %N A261958 Start with a single square for n=0; for the odd n-th generation add a square at each expandable vertex of the squares of the (n-1)-th generation (this is the "vertex to vertex" version); for the even n-th generation use the "side to vertex" version; a(n) is the number of squares added in the n-th generation. %C A261958 See a comment on V-V and V-S at A249246. %C A261958 The overlap rules for the expansion are: (i) overlap within generation is allowed. (ii) overlap of different generations is prohibited. %C A261958 There are a total of 16 combinations as shown in the table below: %C A261958 +-------------------------------------------------------+ %C A261958 | Even n-th version V-V S-V V-S S-S | %C A261958 +-------------------------------------------------------+ %C A261958 | Odd n-th version | %C A261958 | V-V A008574 a(n) ... ... | %C A261958 | S-V ... A008574 A008574 ... | %C A261958 | V-S ... A008574 A008574 ... | %C A261958 | S-S ... ... ... A008574 | %C A261958 +-------------------------------------------------------+ %C A261958 Note: V-V = vertex to vertex, S-V = side to vertex, %C A261958 V-S = vertex to side, S-S = side to side. %H A261958 Kival Ngaokrajang, <a href="/A261958/a261958.pdf">Illustration of initial terms</a> %F A261958 Conjectures from _Colin Barker_, Sep 10 2015: (Start) %F A261958 a(n) = a(n-2)+a(n-8)-a(n-10) for n>10. %F A261958 G.f.: (x^10+4*x^9+3*x^8+4*x^7+4*x^6+16*x^5+12*x^4+12*x^3+11*x^2+4*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)). %F A261958 (End) %o A261958 (PARI) {e=12; o=4; print1("1, ", o, ", ", e, ", "); for(n=3, 100, if (Mod(n,2)==0, if (Mod(n,8)==4, e=e+12); if (Mod(n,8)==6, e=e+4); if (Mod(n,8)==0, e=e+4); if (Mod(n,8)==2, e=e+12); print1(e, ", "), if (Mod(n,8)==3, o=o+12); if (Mod(n,8)==5, o=o+16); if (Mod(n,8)==7, o=o+4); if (Mod(n,8)==1, o=o+8); print1(o, ", ")))} %Y A261958 Cf. A008574, A047557, A249246. %K A261958 nonn %O A261958 0,2 %A A261958 _Kival Ngaokrajang_, Sep 06 2015