This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261960 #16 Oct 28 2018 11:04:41 %S A261960 1,1,1,1,1,2,1,1,1,4,1,1,1,3,8,1,1,1,3,4,16,1,1,1,3,3,7,32,1,1,1,3,3, %T A261960 5,14,64,1,1,1,3,3,5,11,23,128,1,1,1,3,3,5,11,15,39,256,1,1,1,3,3,5, %U A261960 11,13,23,71,512,1,1,1,3,3,5,11,13,19,37,124,1024 %N A261960 Number A(n,k) of compositions of n such that no part equals any of its k immediate predecessors; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A261960 Alois P. Heinz, <a href="/A261960/b261960.txt">Antidiagonals n = 0..50, flattened</a> %e A261960 Square array A(n,k) begins: %e A261960 : 1, 1, 1, 1, 1, 1, 1, ... %e A261960 : 1, 1, 1, 1, 1, 1, 1, ... %e A261960 : 2, 1, 1, 1, 1, 1, 1, ... %e A261960 : 4, 3, 3, 3, 3, 3, 3, ... %e A261960 : 8, 4, 3, 3, 3, 3, 3, ... %e A261960 : 16, 7, 5, 5, 5, 5, 5, ... %e A261960 : 32, 14, 11, 11, 11, 11, 11, ... %p A261960 b:= proc(n, l) option remember; %p A261960 `if`(n=0, 1, add(`if`(j in l, 0, b(n-j, %p A261960 `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n)) %p A261960 end: %p A261960 A:= (n, k)-> b(n, [0$min(n, k)]): %p A261960 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A261960 b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[MemberQ[l, j], 0, b[n-j, If[l == {}, {}, Append[Rest[l], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 08 2017, translated from Maple *) %Y A261960 Columns k=0-2 give: A011782, A003242, A261962. %Y A261960 Main diagonal gives A032020. %Y A261960 Cf. A261959, A261981. %K A261960 nonn,tabl %O A261960 0,6 %A A261960 _Alois P. Heinz_, Sep 06 2015