cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261967 {2,3,5}-primes. (See comments.)

Original entry on oeis.org

2, 151, 3061, 9517861, 11903341, 15344551, 15460771, 19975771, 37935091, 42234271, 52312411, 199938421, 228523501, 237049321, 270798991, 315266641, 315522931, 327445201, 354600601, 423223741, 466801171, 498309631, 499063711, 547916791, 585381361, 621504721
Offset: 1

Views

Author

Clark Kimberling, Nov 09 2015

Keywords

Comments

Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for i = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k and j = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). Note that strong (2,3,5)-primes (A262727) form a proper subset of {2,3,5}-primes. It may be of interest to consider the sets of {2,3,5,7}-primes, {2,3,5,7,11}-primes, etc. Is every such set infinite?

Crossrefs

Programs

  • Mathematica
    {b1, b2, b3} = {2, 3, 5}; z = 10000000;
    Select[Prime[Range[z]],
    PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b3], b1]] &&
    PrimeQ[FromDigits[IntegerDigits[#, b3], b2]] &]
    (* Peter J. C. Moses, Sep 27 2015 *)