cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261972 The first of three consecutive positive integers the sum of the squares of which is equal to the sum of the squares of four consecutive positive integers.

This page as a plain text file.
%I A261972 #17 Jul 16 2025 14:09:58
%S A261972 25,361,5041,70225,978121,13623481,189750625,2642885281,36810643321,
%T A261972 512706121225,7141075053841,99462344632561,1385331749802025,
%U A261972 19295182152595801,268747218386539201,3743165875258953025,52135575035238803161,726154884618084291241
%N A261972 The first of three consecutive positive integers the sum of the squares of which is equal to the sum of the squares of four consecutive positive integers.
%C A261972 For the first of the corresponding four consecutive positive integers, see A157088.
%H A261972 Colin Barker, <a href="/A261972/b261972.txt">Table of n, a(n) for n = 1..873</a>
%H A261972 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-15,1).
%F A261972 a(n) = 15*a(n-1)-15*a(n-2)+a(n-3) for n>3.
%F A261972 G.f.: -x*(x^2-14*x+25) / ((x-1)*(x^2-14*x+1)).
%F A261972 a(n) = (-2-(7-4*sqrt(3))^n*(-2+sqrt(3))+(2+sqrt(3))*(7+4*sqrt(3))^n)/2. - _Colin Barker_, Mar 05 2016
%e A261972 25 is in the sequence because 25^2 + 26^2 + 27^2 = 2030 = 21^2 + 22^2 + 23^2 + 24^2.
%t A261972 LinearRecurrence[{15,-15,1},{25,361,5041},20] (* _Harvey P. Dale_, Jul 16 2025 *)
%o A261972 (PARI) Vec(-x*(x^2-14*x+25)/((x-1)*(x^2-14*x+1)) + O(x^40))
%Y A261972 Cf. A157088, A261973, A261974.
%K A261972 nonn,easy
%O A261972 1,1
%A A261972 _Colin Barker_, Sep 07 2015