cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261973 The first of three consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers.

This page as a plain text file.
%I A261973 #23 Sep 08 2022 08:46:13
%S A261973 137,6341,291593,13406981,616429577,28342353605,1303131836297,
%T A261973 59915722116101,2754820085504393,126661808211086021,
%U A261973 5823688357624452617,267763002642513734405,12311274433198007330057,566050860924465823448261,26026028328092229871289993
%N A261973 The first of three consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers.
%C A261973 For the first of the corresponding eleven consecutive positive integers, see A261974.
%C A261973 From _Zak Seidov_, Sep 07 2015: (Start)
%C A261973 Positive values x of solutions (x, y) to the Diophantine equation 380 + 110x + 11x^2 - 6y - 3y^2 = 0, with values of y in A261974.
%C A261973 Note that there are also solutions with negative x: (x,y) = (-77,137), (-3317, 6341), (-152285, 291593), (-7001573, 13406981), ... with values of y in A261974. (End)
%H A261973 Colin Barker, <a href="/A261973/b261973.txt">Table of n, a(n) for n = 1..601</a>
%H A261973 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (47,-47,1).
%F A261973 a(n) = 47*a(n-1)-47*a(n-2)+a(n-3) for n>3.
%F A261973 G.f.: -x*(5*x^2-98*x+137) / ((x-1)*(x^2-46*x+1)).
%F A261973 a(n) = -1+3*(23+4*sqrt(33))^(-n)+3*(23+4*sqrt(33))^n. - _Colin Barker_, Mar 03 2016
%e A261973 137 is in the sequence because 137^2 + 138^2 + 139^2 = 57134 = 67^2 + ... + 77^2.
%t A261973 LinearRecurrence[{47, -47, 1}, {137, 6341, 291593}, 20] (* _Vincenzo Librandi_, Sep 08 2015 *)
%o A261973 (PARI) Vec(-x*(5*x^2-98*x+137) / ((x-1)*(x^2-46*x+1)) + O(x^40))
%o A261973 (Magma) I:=[137,6341,291593]; [n le 3 select I[n] else 47*Self(n-1)-47*Self(n-2)+Self(n-3): n in [1..15]]; // _Vincenzo Librandi_, Sep 08 2015
%Y A261973 Cf. A157088, A261972, A261974.
%K A261973 nonn,easy
%O A261973 1,1
%A A261973 _Colin Barker_, Sep 07 2015