This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261973 #23 Sep 08 2022 08:46:13 %S A261973 137,6341,291593,13406981,616429577,28342353605,1303131836297, %T A261973 59915722116101,2754820085504393,126661808211086021, %U A261973 5823688357624452617,267763002642513734405,12311274433198007330057,566050860924465823448261,26026028328092229871289993 %N A261973 The first of three consecutive positive integers the sum of the squares of which is equal to the sum of the squares of eleven consecutive positive integers. %C A261973 For the first of the corresponding eleven consecutive positive integers, see A261974. %C A261973 From _Zak Seidov_, Sep 07 2015: (Start) %C A261973 Positive values x of solutions (x, y) to the Diophantine equation 380 + 110x + 11x^2 - 6y - 3y^2 = 0, with values of y in A261974. %C A261973 Note that there are also solutions with negative x: (x,y) = (-77,137), (-3317, 6341), (-152285, 291593), (-7001573, 13406981), ... with values of y in A261974. (End) %H A261973 Colin Barker, <a href="/A261973/b261973.txt">Table of n, a(n) for n = 1..601</a> %H A261973 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (47,-47,1). %F A261973 a(n) = 47*a(n-1)-47*a(n-2)+a(n-3) for n>3. %F A261973 G.f.: -x*(5*x^2-98*x+137) / ((x-1)*(x^2-46*x+1)). %F A261973 a(n) = -1+3*(23+4*sqrt(33))^(-n)+3*(23+4*sqrt(33))^n. - _Colin Barker_, Mar 03 2016 %e A261973 137 is in the sequence because 137^2 + 138^2 + 139^2 = 57134 = 67^2 + ... + 77^2. %t A261973 LinearRecurrence[{47, -47, 1}, {137, 6341, 291593}, 20] (* _Vincenzo Librandi_, Sep 08 2015 *) %o A261973 (PARI) Vec(-x*(5*x^2-98*x+137) / ((x-1)*(x^2-46*x+1)) + O(x^40)) %o A261973 (Magma) I:=[137,6341,291593]; [n le 3 select I[n] else 47*Self(n-1)-47*Self(n-2)+Self(n-3): n in [1..15]]; // _Vincenzo Librandi_, Sep 08 2015 %Y A261973 Cf. A157088, A261972, A261974. %K A261973 nonn,easy %O A261973 1,1 %A A261973 _Colin Barker_, Sep 07 2015