cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261974 The first of eleven consecutive positive integers the sum of the squares of which is equal to the sum of the squares of three consecutive positive integers.

This page as a plain text file.
%I A261974 #12 Jul 02 2016 12:57:01
%S A261974 67,3307,152275,7001563,321919843,14801311435,680538406387,
%T A261974 31289965382587,1438657869192835,66146972017488043,
%U A261974 3041322054935257363,139834667555004350875,6429353385475264883107,295610421064307180272267,13591650015572655027641395
%N A261974 The first of eleven consecutive positive integers the sum of the squares of which is equal to the sum of the squares of three consecutive positive integers.
%C A261974 For the first of the corresponding three consecutive positive integers, see A261973.
%H A261974 Colin Barker, <a href="/A261974/b261974.txt">Table of n, a(n) for n = 1..601</a>
%H A261974 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (47,-47,1).
%F A261974 a(n) = 47*a(n-1)-47*a(n-2)+a(n-3) for n>3.
%F A261974 G.f.: x*(5*x^2-158*x-67) / ((x-1)*(x^2-46*x+1)).
%F A261974 a(n) = -5+3*sqrt(3/11)*(23+4*sqrt(33))^(-n)*(-1+(23+4*sqrt(33))^(2*n)). - _Colin Barker_, Mar 03 2016
%e A261974 67 is in the sequence because 67^2 + ... + 77^2 = 57134 = 137^2 + 138^2 + 139^2.
%t A261974 LinearRecurrence[{47,-47,1},{67,3307,152275},20] (* _Harvey P. Dale_, Jul 02 2016 *)
%o A261974 (PARI) Vec(x*(5*x^2-158*x-67)/((x-1)*(x^2-46*x+1)) + O(x^40))
%Y A261974 Cf. A157088, A261972, A261973.
%K A261974 nonn,easy
%O A261974 1,1
%A A261974 _Colin Barker_, Sep 07 2015