cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261998 Expansion of Product_{k>=1} (1-x^k)*(1+x^k)^4.

Original entry on oeis.org

1, 3, 5, 10, 17, 26, 43, 65, 95, 140, 201, 283, 395, 545, 740, 1002, 1343, 1780, 2350, 3077, 4002, 5183, 6670, 8535, 10880, 13801, 17426, 21925, 27475, 34297, 42677, 52926, 65415, 80625, 99077, 121403, 148386, 180890, 219960, 266857, 323002, 390086, 470125
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 08 2015

Keywords

Comments

In general, if m > 2 and g.f. = Product_{k>=1} (1-x^k)*(1+x^k)^m, then a(n) ~ exp(Pi*sqrt((m-2)*n/3)) / (2^((m+1)/2) * sqrt(n)).
Equals A000009 convolved with A085140. - George Beck, Jul 03 2016

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[(1 - x^k) * (1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/2) * sqrt(n)).