cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262004 L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^4 + 1) ).

This page as a plain text file.
%I A262004 #5 Sep 08 2015 18:16:51
%S A262004 2,30,1300,115380,18362616,4800297144,1929066361136,1131386990471376,
%T A262004 929148154976860592,1033280101490424757200,1513696127276317671503232,
%U A262004 2854591502346208585710465024,6796099969466204436648991894784,20087194984043555807709161038217856,72648127998052140755125407470469776640
%N A262004 L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^4 + 1) ).
%e A262004 L.g.f.: L(x) = 2*x + 30*x^2/2 + 1300*x^3/3 + 115380*x^4/4 + 18362616*x^5/5 + 4800297144*x^6/6 +...
%e A262004 where
%e A262004 exp(L(x)) = 1 + 2*x + 34*x^2/2! + 2788*x^3/3! + 716516*x^4/4! + 448539016*x^5/5! + 581755103752*x^6/6! +...+ A255434(n)*x^n/n! +...
%o A262004 (PARI) {a(n) = n*polcoeff( log(sum(m=0,n+1,x^m/m!*prod(k=1,m,k^4+1)) +x*O(x^n)), n)}
%o A262004 for(n=1,30,print1(a(n),", "))
%Y A262004 Cf. A255434.
%K A262004 nonn
%O A262004 1,1
%A A262004 _Paul D. Hanna_, Sep 08 2015