cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262011 a(n) = (1/n!) * Product_{k=1..n} (k^3 + 1).

This page as a plain text file.
%I A262011 #9 Jul 19 2019 12:08:08
%S A262011 1,2,9,84,1365,34398,1244061,61136712,3920391657,317987323290,
%T A262011 31830531061329,3854387943062748,555353062796290941,
%U A262011 93897387078942114486,18410594823692578876005,4143611208319076419026192,1061023445030203505546894289,306698188757554119191614031538,99387251945711843180260258108953
%N A262011 a(n) = (1/n!) * Product_{k=1..n} (k^3 + 1).
%C A262011 Logarithmic derivative equals A262003.
%F A262011 a(n) = (n+1) * Product_{k=1..n} (k^2 - k + 1).
%F A262011 a(n) = (n+1) * A130032(n).
%t A262011 Table[1/n! Product[k^3+1,{k,n}],{n,0,20}] (* _Harvey P. Dale_, Jul 19 2019 *)
%o A262011 (PARI) {a(n)=prod(k=1,n,(k^3+1))/n!}
%o A262011 for(n=0,30,print1(a(n),", "))
%Y A262011 Cf. A130032, A262003.
%K A262011 nonn
%O A262011 0,2
%A A262011 _Paul D. Hanna_, Sep 08 2015