cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262015 a(n) = [x^n] (1-x)^(4*n+1) * Sum_{k>=0} binomial(n+k-1,k)^4 * x^k.

This page as a plain text file.
%I A262015 #8 May 25 2025 16:06:50
%S A262015 1,11,603,49682,4961755,554083761,66555527346,8415759917268,
%T A262015 1105492743188955,149552158117961225,20710288432292240353,
%U A262015 2923132560874617706758,419153950726771517250994,60909593781491823719018822,8952489587089165075007703060,1328855554150146863702291235432,198950469430034588049648664728027,30012345078088728771497844274527081
%N A262015 a(n) = [x^n] (1-x)^(4*n+1) * Sum_{k>=0} binomial(n+k-1,k)^4 * x^k.
%o A262015 (PARI) {A262014(n, k)=polcoeff(sum(j=0, n+k, binomial(n+j, j)^4*x^j)*(1-x)^(4*n+1), k)}
%o A262015 for(n=0, 20,  print1(A262014(n, n), ", "))
%Y A262015 Main diagonal of triangle A262014.
%K A262015 nonn
%O A262015 0,2
%A A262015 _Paul D. Hanna_, Sep 10 2015