A262019 The first of eleven consecutive positive integers the sum of the squares of which is equal to the sum of the squares of five consecutive positive integers.
15, 3575, 637215, 113421575, 20188404015, 3593422493975, 639609015524415, 113846811340852775, 20264092809656270415, 3606894673307475281975, 642006987755920943922015, 114273636925880620542837575, 20340065365818994535681167215, 3620417361478855146730704927575
Offset: 1
Examples
15 is in the sequence because 15^2 + ... + 25^2 = 4510 = 28^2 + ... + 32^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..444
- Index entries for linear recurrences with constant coefficients, signature (179,-179,1).
Programs
-
PARI
Vec(5*x*(5*x^2-178*x-3)/((x-1)*(x^2-178*x+1)) + O(x^20))
Formula
a(n) = 179*a(n-1)-179*a(n-2)+a(n-3) for n>3.
G.f.: 5*x*(5*x^2-178*x-3) / ((x-1)*(x^2-178*x+1)).
Comments