cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261250 One half of the even entries of A033317.

Original entry on oeis.org

1, 2, 1, 3, 1, 90, 2, 4, 2, 1, 6, 21, 5, 12, 910, 1, 2, 3, 6, 3, 2, 160, 1, 15, 12, 1794, 7, 45, 4550, 33, 6, 1, 10, 1287, 2, 113076990, 4, 8, 4, 2, 468, 15, 1, 133500, 215, 3315, 20, 3, 9, 3, 15498, 561, 26500, 1, 60, 630, 110532, 2, 3188676, 5, 10, 5, 2, 1557945, 65, 7570212227550, 1, 14, 6, 56648, 48, 455, 30, 14127
Offset: 1

Views

Author

Wolfdieter Lang, Sep 16 2015

Keywords

Comments

2*a(n) = y0(n) is the positive fundamental solution satisfying the Pell equation x0(n)^2 + D(n)*y0(n)^2 = +1 with D(n) coinciding apparently with Conway's rectangular numbers r(n) = A007969(n). The corresponding x0 values are given in A262024.
For a proof of this coincidence see the W. Lang link under A007969. - Wolfdieter Lang, Oct 04 2015

Examples

			The [r(n), x0(n), y0(n)] values for n = 1..16 are:
[2, 3, 2], [5, 9, 4], [6, 5, 2], [10, 19, 6],
[12, 7, 2], [13, 649, 180], [14, 15, 4],
[17, 33, 8], [18, 17, 4], [20, 9, 2],
[21, 55, 12], [22, 197, 42], [26, 51, 10],
[28, 127, 24], [29, 9801, 1820], [30, 11, 2], ...
		

Crossrefs

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}];
    Select[DeleteCases[PellSolve /@ Range[200], {}][[All, 2]], EvenQ]/2 (* Jean-François Alcover, Aug 12 2023, using the PellSolve code given in A033317 *)

A263007 Second member S0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 4, 13, 1, 2, 3, 1, 1, 1, 5, 1, 5, 3, 78, 1, 5, 25, 3, 3, 1, 2, 13, 2, 3805, 4, 1, 1, 1, 36, 3, 1, 125, 5, 85, 4, 3, 1, 1, 41, 11, 53, 1, 12, 14, 732, 2, 569, 5, 1, 1, 1, 389, 13, 851525, 1, 2, 2, 73, 3, 13, 5, 51
Offset: 1

Views

Author

Wolfdieter Lang, Oct 28 2015

Keywords

Comments

See A263007. C(n)*a(n)^2 - B(n)*A263007(n)^2 = +1, n >= 1, with the 1-happy couple (B(n), C(n)) = (A191854(n), A191855(n)).
In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = S0(n) numbers appear for the t = 1 rows in column w.

Examples

			n = 4: 1-happy number A007969(4) = 10 = 1*10 = A191854(4)*A191855(4). 10*a(4)^2 - 1*A263006(4)^2 = 10*1^2 - 1*3^2 = +1. This is the smallest positive solution for given (B, C) = (1, 10).
		

Crossrefs

Formula

A191855(n)*a(n)^2 - A191854(n)*A263006(n)^2 = +1, and A263006(n) with a(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)).

A263006 First member R0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 18, 1, 4, 2, 1, 3, 7, 5, 3, 70, 1, 1, 1, 6, 3, 2, 32, 1, 3, 4, 23, 7, 9, 182, 11, 2, 1, 5, 99, 1, 29718, 1, 8, 4, 2, 13, 5, 1, 1068, 43, 39, 5, 1, 9, 3, 378, 51, 500, 1, 5, 45, 151, 1, 5604, 1, 10, 5, 2, 4005, 5, 8890182, 1, 7, 3, 776, 16, 35, 6, 277
Offset: 1

Views

Author

Wolfdieter Lang, Oct 28 2015

Keywords

Comments

The 1-happy numbers B(n)*C(n) are given in A007969(n) (called rectangular numbers in the Conway paper). B(n) = A191854(n), C(n) = A191855(n). Here the corresponding smallest positive numbers satisfying C(n)*S0(n)^2 - B(n)*R0(n)^2 = +1, n >= 1, are given as R0(n) = a(n) and S0(n) = A263007(n).
For a proof of Conway's happy number factorization theorem see the W. Lang link under A007970.
In the W. Lang link given in A007969 the first C(n), B(n), S0(n), R0(n) numbers are given in the Table for d(n) = A007969(n), n >= 1.
In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = R0(n) numbers appear for the t = 1 rows in column v.

Examples

			n = 6: 1-happy number A007969(6) = 13 = 1*13 = A191854(6)*A191855(6). 13*A263007(6)^2 - 1*a(6)^2 = 13*5^2 - 1*18^2 = +1. This is the smallest positive solution for (B, C) = (1, 13).
		

Crossrefs

Formula

A191855(n)*A263007(n)^2 - A191854(n)*a(n)^2 = +1, and a(n) with A263007(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)).
Showing 1-3 of 3 results.