cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262027 The positive fundamental solutions x = x0(n) for the Pell equation x^2 - d*y^2 = +1 with odd y = y0(n). Then d coincides with d(n) = A007970(n).

Original entry on oeis.org

2, 8, 3, 10, 4, 170, 24, 5, 26, 1520, 17, 6, 19, 3482, 48, 7, 50, 530, 8, 48842, 3480, 26, 80, 9, 82, 28, 197, 1574, 49, 10, 227528, 51, 962, 1126, 120, 11, 122, 4730624, 577, 10610, 244, 35, 77563250, 12, 1728148040, 37, 1324, 721, 64080026, 168, 13, 170, 2024, 199, 4190210
Offset: 1

Views

Author

Wolfdieter Lang, Oct 04 2015

Keywords

Comments

The corresponding values y = y0(n) are given by A262026(n).
This is a proper subset of A033313 corresponding to D values from d(n) = A007970(n).
For the proof that d(n) = A007970(n), the products of Conway's 2-happy couples, see the W. Lang link under A007970.
If d(n) = A007970(n) is odd (necessarily congruent to 3 modulus 4) then x0(n) is even, and if d(n) is even (necessarily congruent to 0 modulus 8) then x0 is odd.

Examples

			For the first [d(n), x0(n), y0(n)] see A262026.
		

Crossrefs

Formula

a(n)^2 - d(n)*y0(n)^2 = +1 with y0(n) = A262026(n) and d(n) = A007970(n). (x0(n) = a(n), y0(n)) are the positive fundamental solutions of this Pell equation x^2 - d*y^2 = +1 with odd y = y0.