A262030 Partition array in Abramowitz-Stegun order: Schur functions evaluated at 1.
1, 3, 1, 10, 8, 1, 35, 45, 20, 15, 1, 126, 224, 175, 126, 75, 24, 1, 462, 1050, 1134, 490, 840, 896, 175, 280, 189, 35, 1, 1716, 4752, 6468, 4704, 4950, 7350, 3528, 2646, 2400, 2940, 784, 540, 392, 48, 1, 6435, 21021, 34320, 33264, 13860, 27027, 50688, 41580, 25872, 15876, 17325, 29700, 15120, 14700, 1764, 5775, 7680, 2352, 945, 720, 63, 1
Offset: 1
Examples
The irregular triangle begins (commas separate entries for partitions of like numbers of parts in A-St order): n\k 1 2 3 4 5 6 7 8 9 10 11 1: 1 2: 3, 1 3: 10, 8, 1 4: 35, 45 20, 15, 1 5: 126, 224 175, 126 75, 24, 1 6: 462, 1050 1134 490, 840 896 175, 280 189,35, 1 ... Row 7: 1716, 4752 6468 4704, 4950 7350 3528 2646, 2400 2940 784, 540 392, 48, 1; Row 8: 6435, 21021 34320 33264 13860, 27027 50688 41580 25872 15876, 17325 29700 15120 14700 1764, 5775 7680 2352, 945 720, 63, 1. ... n = 4, k = 4: lambda(4, 4) = (2,1,1,0) (m=3), SSYT (we use semicolons to separate the three rows): [1,1;2;3], [1,1;2;4], [1,1;3;4], [1,2;2;3], [1,2;2;4], [1,2;3;4], [1,3;2;3], [1,3;2;4], [1,3;3;4], [1,4;2;3], [1,4;2;4], [1,4;3;4], [2,2;3;4], [2,3;3;4], [2,4;3;4], hence a(4, 4) = 15. The three tableaux with distinct numbers are standard Young tableaux and give A117506(4, 4) = 3.
References
- Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford University Press, 1979.
- Stanley, R. P., Enumerative Combinatorics, Vol. 2, Cambridge University Press 1999, sect. 7.30, pp. 308-316.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
- Wikipedia, Schur functions.
Formula
a(n, k) = Det_{i,j=1..n} x[i]^(lambda_j + n-j) / Det_{i,j=1..n} x[i]^(n-j), evaluated at x[i] = 1 for i = 1..n (after division). The denominator is the Vandermonde determinant, the numerator an alternant. See, e.g., the Macdonald reference p. 24.
Comments