cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262045 Irregular triangle read by rows in which row n lists the elements of row n of A249223 and then the elements of the same row in reverse order.

This page as a plain text file.
%I A262045 #35 Nov 16 2024 02:02:05
%S A262045 1,1,1,1,1,0,0,1,1,1,1,1,1,0,0,1,1,1,2,2,1,1,1,0,0,0,0,1,1,1,1,1,1,1,
%T A262045 1,0,1,1,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0,1,1,1,2,2,2,2,1,1,1,0,0,0,
%U A262045 0,0,0,1,1,1,1,0,0,1,1,1,1,0,1,1,2,2,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1
%N A262045 Irregular triangle read by rows in which row n lists the elements of row n of A249223 and then the elements of the same row in reverse order.
%C A262045 The n-th row of the triangle has length 2*A003056(n).
%C A262045 This sequence extends A249223 in the same manner as A237593 extends A237591.
%C A262045 The entries in the n-th row of the triangle are the widths of the regions between the (n-1)-st and n-th Dyck paths for the symmetric representation of sigma(n) with each column representing the corresponding leg of the n-th path.
%H A262045 N. J. A. Sloane, <a href="/A262045/b262045.txt">Table of n, a(n) for n = 1..3200</a> [First 150 rows, based on G. C. Greubel's b-file for A249223]
%F A262045 T(n, k) = T(n, 2*A003056(n) + 1 - k) = A249223(n, k), for 1 <= n and 1 <= k <= A003056(n).
%e A262045 n\k 1   2   3   4   5   6   7   8   9   10
%e A262045 1   1   1
%e A262045 2   1   1
%e A262045 3   1   0   0   1
%e A262045 4   1   1   1   1
%e A262045 5   1   0   0   1
%e A262045 6   1   1   2   2   1   1
%e A262045 7   1   0   0   0   0   1
%e A262045 8   1   1   1   1   1   1
%e A262045 9   1   0   1   1   0   1
%e A262045 10  1   1   1   0   0   1   1   1
%e A262045 11  1   0   0   0   0   0   0   1
%e A262045 12  1   1   2   2   2   2   1   1
%e A262045 13  1   0   0   0   0   0   0   1
%e A262045 14  1   1   1   0   0   1   1   1
%e A262045 15  1   0   1   1   2   2   1   1   0   1
%e A262045 16  1   1   1   1   1   1   1   1   1   1
%e A262045 17  1   0   0   0   0   0   0   0   0   1
%e A262045 18  1   1   2   1   1   1   1   2   1   1
%e A262045 19  1   0   0   0   0   0   0   0   0   1
%e A262045 20  1   1   1   1   2   2   1   1   1   1
%e A262045 ...
%e A262045 The triangle shows that the region between a Dyck path for n and n-1 has width 1 if n is a power of 2. For n a prime the region is a horizontal rectangle of width (height) 1 and the vertical rectangle of width 1 which is its reflection. The Dyck paths and regions are shown below for n = 1..5 (see the A237593 example for n = 1..28):
%e A262045    _ _ _
%e A262045 5 |_ _ _|
%e A262045 4 |_ _  |_ _
%e A262045 3 |_ _|_  | |
%e A262045 2 |_  | | | |
%e A262045 1 |_|_|_|_|_|
%t A262045 (* functions a237048[ ] and row[ ] are defined in A237048 *)
%t A262045 f[n_] :=Drop[FoldList[Plus, 0, Map[(-1)^(#+1)&, Range[row[n]]] a237048[n]], 1]
%t A262045 a262045[n_]:=Join[f[n], Reverse[f[n]]]
%t A262045 Flatten[Map[a262045, Range[16]]](* data *)
%Y A262045 Cf. A000203, A003056, A196020, A236104, A237048, A237270, A237271, A237591, A237593, A249223, A262048.
%K A262045 nonn,tabf
%O A262045 1,19
%A A262045 _Hartmut F. W. Hoft_, Sep 09 2015