This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262057 #54 Jan 06 2024 12:07:00 %S A262057 0,2,1,7,5,3,21,8,6,4,23,22,16,11,9,64,26,24,17,14,10,69,65,50,25,19, %T A262057 15,12,71,70,67,53,48,20,18,13,193,80,78,68,59,49,34,29,27,207,194, %U A262057 152,79,73,62,51,35,32,28,209,208,196,161,150,74,63,52,43,33,30 %N A262057 Array based on the Stanley sequence S(0), A005836, by antidiagonals. %C A262057 This array is similar to a dispersion in that the first column is the minimal nonnegative sequence that contains no 3-term arithmetic progression, and each next column is the minimal sequence consisting of the numbers rejected from the previous column that contains no 3-term arithmetic progression. %C A262057 A100480(n) describes which column n is sorted into. %C A262057 The columns of the array form the greedy partition of the nonnegative integers into sequences that contain no 3-term arithmetic progression. - _Robert Israel_, Feb 03 2016 %H A262057 Max Barrentine and Robert Israel, <a href="/A262057/b262057.txt">Table of n, a(n) for n = 1..10011</a> (first 141 antidiagonals, flattened; n=1..77 from Max Barrentine) %F A262057 A006997(A(n, k)) = k - 1. - _Rémy Sigrist_, Jan 06 2024 %e A262057 From the top-left corner, this array starts: %e A262057 0 2 7 21 23 64 %e A262057 1 5 8 22 26 65 %e A262057 3 6 16 24 50 67 %e A262057 4 11 17 25 53 68 %e A262057 9 14 19 48 59 73 %e A262057 10 15 20 49 62 74 %p A262057 M:= 20: # to get the first M antidiagonals %p A262057 for i from 1 to M do B[i]:= {}: F[i]:= {}: od: %p A262057 countdowns:= Vector(M,j->M+1-j): %p A262057 for x from 0 while max(countdowns) > 0 do %p A262057 for i from 1 do %p A262057 if not member(x, F[i]) then %p A262057 F[i]:= F[i] union map(y -> 2*x-y, B[i]); %p A262057 B[i]:= B[i] union {x}; %p A262057 countdowns[i]:= countdowns[i] - 1; %p A262057 break %p A262057 fi %p A262057 od; %p A262057 od: %p A262057 seq(seq(B[n+1-i][i], i=1..n),n=1..M); # _Robert Israel_, Feb 03 2016 %o A262057 (MATLAB) %o A262057 function A = A262057( M, N ) %o A262057 % to get first M antidiagonals using x up to N %o A262057 B = cell(1,M); %o A262057 F = zeros(M,N+1); %o A262057 countdowns = [M:-1:1]; %o A262057 for x=0:N %o A262057 if max(countdowns) == 0 %o A262057 break %o A262057 end %o A262057 for i=1:M %o A262057 if F(i,x+1) == 0 %o A262057 newforb = 2*x - B{i}; %o A262057 newforb = newforb(newforb <= N & newforb >= 1); %o A262057 F(i,newforb+1) = 1; %o A262057 B{i}(end+1) = x; %o A262057 countdowns(i) = countdowns(i)-1; %o A262057 break %o A262057 end %o A262057 end %o A262057 end %o A262057 if max(countdowns) > 0 %o A262057 [~,jmax] = max(countdowns); %o A262057 jmax = jmax(1); %o A262057 error ('Need larger N: B{%d} has only %d elements',jmax,numel(B{jmax})); %o A262057 end %o A262057 A = zeros(1,M*(M+1)/2); %o A262057 k = 0; %o A262057 for n=1:M %o A262057 for i=1:n %o A262057 k=k+1; %o A262057 A(k) = B{n+1-i}(i); %o A262057 end %o A262057 end %o A262057 end % _Robert Israel_, Feb 03 2016 %Y A262057 First column is A005836. %Y A262057 First row is A265316. %Y A262057 Cf. A006997, A074940, A100480. %K A262057 nonn,tabl %O A262057 1,2 %A A262057 _Max Barrentine_, Nov 29 2015