This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262065 #39 Feb 16 2025 08:33:27 %S A262065 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, %T A262065 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48, %U A262065 49,50,51,52,53,54,55,56,57,58,59,61,122,183,244,305,366 %N A262065 Numbers that are palindromes in base-60 representation. %H A262065 Chai Wah Wu, <a href="/A262065/b262065.txt">Table of n, a(n) for n = 1..10000</a> (corrected b-file originally from Reinhard Zumkeller) %H A262065 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A262065 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a> %H A262065 Wikipedia, <a href="http://www.wikipedia.org/wiki/Palindromic_number">Palindromic number</a> %H A262065 Wikipedia, <a href="http://www.wikipedia.org/wiki/Sexagesimal">Sexagesimal</a> %H A262065 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %e A262065 . n | a(n) | base 60 n | a(n) | base 60 %e A262065 . -----+------+----------- ------+-------+-------------- %e A262065 . 100 | 2440 | [40, 40] 1000 | 56415 | [15, 40, 15] %e A262065 . 101 | 2501 | [41, 41] 1001 | 56475 | [15, 41, 15] %e A262065 . 102 | 2562 | [42, 42] 1002 | 56535 | [15, 42, 15] %e A262065 . 103 | 2623 | [43, 43] 1003 | 56595 | [15, 43, 15] %e A262065 . 104 | 2684 | [44, 44] 1004 | 56655 | [15, 44, 15] %e A262065 . 105 | 2745 | [45, 45] 1005 | 56715 | [15, 45, 15] %e A262065 . 106 | 2806 | [46, 46] 1006 | 56775 | [15, 46, 15] %e A262065 . 107 | 2867 | [47, 47] 1007 | 56835 | [15, 47, 15] %e A262065 . 108 | 2928 | [48, 48] 1008 | 56895 | [15, 48, 15] %e A262065 . 109 | 2989 | [49, 49] 1009 | 56955 | [15, 49, 15] %e A262065 . 110 | 3050 | [50, 50] 1010 | 57015 | [15, 50, 15] %e A262065 . 111 | 3111 | [51, 51] 1011 | 57075 | [15, 51, 15] %e A262065 . 112 | 3172 | [52, 52] 1012 | 57135 | [15, 52, 15] %e A262065 . 113 | 3233 | [53, 53] 1013 | 57195 | [15, 53, 15] %e A262065 . 114 | 3294 | [54, 54] 1014 | 57255 | [15, 54, 15] %e A262065 . 115 | 3355 | [55, 55] 1015 | 57315 | [15, 55, 15] %e A262065 . 116 | 3416 | [56, 56] 1016 | 57375 | [15, 56, 15] %e A262065 . 117 | 3477 | [57, 57] 1017 | 57435 | [15, 57, 15] %e A262065 . 118 | 3538 | [58, 58] 1018 | 57495 | [15, 58, 15] %e A262065 . 119 | 3599 | [59, 59] 1019 | 57555 | [15, 59, 15] %e A262065 . 120 | 3601 | [1, 0, 1] 1020 | 57616 | [16, 0, 16] %e A262065 . 121 | 3661 | [1, 1, 1] 1021 | 57676 | [16, 1, 16] %e A262065 . 122 | 3721 | [1, 2, 1] 1022 | 57736 | [16, 2, 16] %e A262065 . 123 | 3781 | [1, 3, 1] 1023 | 57796 | [16, 3, 16] %e A262065 . 124 | 3841 | [1, 4, 1] 1024 | 57856 | [16, 4, 16] %e A262065 . 125 | 3901 | [1, 5, 1] 1025 | 57916 | [16, 5, 16] . %t A262065 f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* _Vincenzo Librandi_, Aug 24 2016 *) %t A262065 pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* _Harvey P. Dale_, Nov 04 2017 *) %o A262065 (Haskell) %o A262065 import Data.List.Ordered (union) %o A262065 a262065 n = a262065_list !! (n-1) %o A262065 a262065_list = union us vs where %o A262065 us = [val60 $ bs ++ reverse bs | bs <- bss] %o A262065 vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs | %o A262065 bs <- tail bss, cs <- take 60 bss] %o A262065 bss = iterate s [0] where %o A262065 s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds %o A262065 val60 = foldr (\b v -> 60 * v + b) 0 %o A262065 (Magma) [n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // _Vincenzo Librandi_, Aug 24 2016 %o A262065 (PARI) isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ _Michel Marcus_, Jan 22 2022 %o A262065 (Python) %o A262065 from sympy import integer_log %o A262065 from gmpy2 import digits, mpz %o A262065 def A262065(n): %o A262065 if n == 1: return 0 %o A262065 y = 60*(x:=60**integer_log(n>>1,60)[0]) %o A262065 return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if n<x+y else (c:=n-y)*y+mpz(digits(c,60)[::-1]or'0',60)) # _Chai Wah Wu_, Jun 13-14 2024 %Y A262065 Cf. A262079 (first differences). %Y A262065 Intersection with A002113: A262069. %Y A262065 Corresponding sequences for bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957. %K A262065 nonn,base,look %O A262065 1,3 %A A262065 _Reinhard Zumkeller_, Sep 10 2015