cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262069 Palindromes in base 10 that are also palindromes in base 60.

This page as a plain text file.
%I A262069 #25 Feb 16 2025 08:33:27
%S A262069 0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,55155,55455,55755,57075,57375,
%T A262069 113311,148841,2796972,8372738,11166111,14033041,26233262,28933982,
%U A262069 150050051,151141151,152070251,152232251,153161351,153323351,154252451,154414451,155343551,155505551
%N A262069 Palindromes in base 10 that are also palindromes in base 60.
%H A262069 Chai Wah Wu, <a href="/A262069/b262069.txt">Table of n, a(n) for n = 1..82</a>
%H A262069 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>
%H A262069 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a>
%H A262069 Wikipedia, <a href="http://www.wikipedia.org/wiki/Palindromic_number">Palindromic number</a>
%H A262069 Wikipedia, <a href="http://www.wikipedia.org/wiki/Sexagesimal">Sexagesimal</a>
%H A262069 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%e A262069 n = 22: 41*60^2 + 20*60^1 + 41*60^0 = A262065(2541) = A002113(1148) = 148841 = a(22);
%e A262069 n = 27: 2*60^4 + 1*60^3 + 27*60^2 + 1*60^1 + 2*60^0 = A262065(7348) = A002113(12623) = 26233262 = a(27).
%t A262069 palQ[n_Integer, base_Integer]:=Module[{idn=IntegerDigits[n, base]}, idn==Reverse[idn]]; Select[Range[10^6], palQ[#, 10]&& palQ[#, 60] &] (* _Vincenzo Librandi_, Sep 11 2015 *)
%o A262069 (Haskell)
%o A262069 -- import Data.List.Ordered (isect)
%o A262069 a262069 n = a262069_list !! (n-1)
%o A262069 a262069_list = isect a002113_list a262065_list
%o A262069 (Python)
%o A262069 def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l
%o A262069     if l > 0:
%o A262069         yield 0
%o A262069         for x in range(1,l+1):
%o A262069             n = b**(x-1)
%o A262069             n2 = n*b
%o A262069             for y in range(n,n2):
%o A262069                 k, m = y//b, 0
%o A262069                 while k >= b:
%o A262069                     k, r = divmod(k,b)
%o A262069                     m = b*m + r
%o A262069                 yield y*n + b*m + k
%o A262069             for y in range(n,n2):
%o A262069                 k, m = y, 0
%o A262069                 while k >= b:
%o A262069                     k, r = divmod(k,b)
%o A262069                     m = b*m + r
%o A262069                 yield y*n2 + b*m + k
%o A262069 A262069_list = [n for n in palgen(5,60) if str(n) == str(n)[::-1]] # _Chai Wah Wu_, Sep 10 2015
%o A262069 (Magma) [n: n in [0..2*10^7] | Intseq(n, 60) eq Reverse(Intseq(n, 60)) and Intseq(n, 10) eq Reverse(Intseq(n, 10))]; // _Vincenzo Librandi_, Sep 11 2015
%o A262069 (PARI) ispal(v) = v == Vecrev(v);
%o A262069 isok(n) = ispal(digits(n)) && ispal(digits(n,60)); \\ _Michel Marcus_, Sep 11 2015
%Y A262069 Intersection of A002113 and A262065.
%K A262069 nonn,base
%O A262069 1,3
%A A262069 _Reinhard Zumkeller_, Sep 10 2015
%E A262069 More terms from _Chai Wah Wu_, Sep 10 2015