cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262079 Differences between successive numbers that can be written as palindromes in base 60, cf. A262065.

This page as a plain text file.
%I A262079 #15 Feb 16 2025 08:33:27
%S A262079 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A262079 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,61,61,61,61,61,
%U A262079 61,61,61,61,61,61,61,61,61,61,61,61,61,61,61
%N A262079 Differences between successive numbers that can be written as palindromes in base 60, cf. A262065.
%C A262079 First differences of A262065.
%C A262079 From  _Georg Fischer_, Feb 15 2019: (Start)
%C A262079 Up to n = 10000, only 12 different values occur. The following table shows the counts and those values.
%C A262079      59 -12740399
%C A262079      61 1
%C A262079      45 12747601
%C A262079       1 12956461
%C A262079       2 2
%C A262079    3479 216001
%C A262079       1 3599
%C A262079    2753 3600
%C A262079       1 59
%C A262079    3480 60
%C A262079     117 61
%C A262079       1 7202
%C A262079 (End)
%H A262079 Reinhard Zumkeller, <a href="/A262079/b262079.txt">Table of n, a(n) for n = 1..10000</a>
%H A262079 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>
%H A262079 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a>
%H A262079 Wikipedia, <a href="http://www.wikipedia.org/wiki/Palindromic_number">Palindromic number</a>
%H A262079 Wikipedia, <a href="http://www.wikipedia.org/wiki/Sexagesimal">Sexagesimal</a>
%H A262079 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%e A262079 a(n) = 1 for n = 1..59, as the first 60 sexagesimal palindromes are 0..59;
%e A262079 a(60) = (1*60^1 + 1*60^0) - 59*(60^0) = 61 - 59 = 2;
%e A262079 a(61) = (2*60^1 + 2*60^0) - (1*60^1+1*60^0) = 122 - 61 = 61.
%o A262079 (Haskell)
%o A262079 a262079 n = a262079_list !! (n-1)
%o A262079 a262079_list = zipWith (-) (tail a262065_list) a262065_list
%Y A262079 Cf. A262065, A086862.
%K A262079 sign,base
%O A262079 1,60
%A A262079 _Reinhard Zumkeller_, Sep 10 2015