cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262082 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1 + x*P(n,x)^(1*n) + x^2*P(n,x)^(2*n) + x^3*P(n,x)^(3*n) for n >= 0.

This page as a plain text file.
%I A262082 #23 Jun 03 2018 02:06:21
%S A262082 1,1,1,1,1,1,1,1,2,1,1,1,3,5,0,1,1,4,12,13,0,1,1,5,22,54,36,0,1,1,6,
%T A262082 35,139,262,104,0,1,1,7,51,284,953,1337,309,0,1,1,8,70,505,2509,6894,
%U A262082 7072,939,0,1,1,9,92,818,5455,23426,51796,38426,2905,0,1,1,10
%N A262082 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1 + x*P(n,x)^(1*n) + x^2*P(n,x)^(2*n) + x^3*P(n,x)^(3*n) for n >= 0.
%C A262082 The terms define the array A(n,k):
%C A262082   n\k:  0  1   2   3    4     5      6      7       8     9  10  ...
%C A262082     0:  1  1   1   1    0     0      0      0       0     0   0  ...
%C A262082     1:  1  1   2   5   13    36    104    309     939  2905  ...
%C A262082     2:  1  1   3  12   54   262   1337   7072   38426  ...
%C A262082     3:  1  1   4  22  139   953   6894  51796  400269  ...
%C A262082     4:  1  1   5  35  284  2509  23426  ...
%C A262082     5:  1  1   6  51  505  5455  62336  ...
%C A262082     6:  1  1   7  70  818  ...
%C A262082     7:  1  1   8  92  ...
%C A262082     8:  1  1   9  ...
%C A262082     9:  1  1  10  ...
%C A262082    10:  1  1  ...
%C A262082    11:  1  ...
%C A262082   etc.
%C A262082   For row 1 see A036765, for row 2 see A186241, and for row 3 see A200731.
%C A262082 Conjecture 1: The A(n,k), here n > 0, are the number of lattice paths, if
%C A262082   (a) length of path is k*n (for the k-th term of row n),
%C A262082   (b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
%C A262082   (c) you start at (0,0), end at (k*n,0), and
%C A262082   (d) never cross the x-axis.
%C A262082 Conjecture 2: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
%C A262082   (a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
%C A262082   (b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
%C A262082   (c) you start at (0,m-1), end at (k*n+m-1,0), and
%C A262082   (d) never cross the x-axis.
%F A262082 A(n,k) = 1/(n*k+1) * Sum_{j=0..k} (-2)^j*binomial(n*k+1,j)* binomial(3*n*k+3-2*j,k-j) for n >= 0, and k >= 0. (conjectured)
%F A262082 A(n,0) = A(n,1) = 1, n >= 0;
%F A262082   A(n,2) = n+1, n >= 0;
%F A262082   A(n,3) = (3*n^2+5*n+2)/2, n >= 0;
%F A262082   A(n,4) = (8*n^3+18*n^2+13*n)/3, n >= 0;
%F A262082   A(n,5) = (125*n^4+350*n^3+355*n^2+34*n)/24, n >= 0.
%F A262082 The g.f. P(n,x) of row n of the array A(n,k) satisfy:
%F A262082   P(n,x) = P(n-1,x*P(n,x)), n > 0;
%F A262082   P(n,x) = P(n-2,x*P(n,x)^2), n > 1;
%F A262082   etc.
%F A262082   P(n,x) = P(0,x*P(n,x)^n), n >= 0.
%F A262082 The coefficients B(m,n,k) of the P(n,x)^m are:
%F A262082   B(m,n,k) = m/(n*k+m) * Sum_{j=0..k} (-2)^j*binomial(n*k+m,j)* binomial(3*n*k+3*m-2*j,k-j) for m > 0, n > 0, and k >= 0. (conjectured)
%F A262082 P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum_{j=0..k} (-2)^j*binomial(n*k,j)* binomial(3*n*k-2*j,k-j))) for n > 0 (conjectured); (see for n=1: A036765, for n=2: A186241, and for n=3: A200731).
%F A262082 P(n,x/(1+x+x^2+x^3)^n) = 1+x+x^2+x^3 for n >= 0. - _Werner Schulte_, Nov 20 2015
%e A262082 The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.,
%e A262082 n\m 0  1   2   3    4     5     6     7    8  9 ...
%e A262082 0:  1
%e A262082 1:  1  1
%e A262082 2:  1  1   1
%e A262082 3:  1  1   2   1
%e A262082 4:  1  1   3   5    0
%e A262082 5:  1  1   4  12   13     0
%e A262082 6:  1  1   5  22   54    36     0
%e A262082 7:  1  1   6  35  139   262   104     0
%e A262082 8:  1  1   7  51  284   953  1337   309    0
%e A262082 9:  1  1   8  70  505  2509  6894  7072  939  0
%e A262082 etc. [reformatted by _Wolfdieter Lang_, Oct 15 2015]
%Y A262082 Cf. A036765, A186241, A200731, A261440.
%K A262082 nonn,tabl
%O A262082 0,9
%A A262082 _Werner Schulte_, Sep 10 2015