cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262123 a(1) + a(2) + ... + a(n) is the representation as a sum of n squares of the smallest integer needing n squares (using the greedy algorithm).

Original entry on oeis.org

1, 1, 1, 4, 16, 144, 7056, 13046544, 42600214749456, 453694852221644777216198544, 51459754733114686962148583539748993964925660496781456
Offset: 1

Views

Author

Robert FERREOL, Sep 11 2015

Keywords

Examples

			23 =16+4+1+1+1 is the first number to need 5 squares for its greedy decomposition, so a(1)=1,a(2)=1,a(3)=1,a(4)=4,a(5)=16.
		

Crossrefs

Cf. A006892.

Programs

  • Maple
    a:=n->if n=1 then 1 else s:=add(a(k),k=1..n-1); floor((s+1)/2)^2 fi;
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Floor[(Total[Array[a, n-1]]+1)/2]^2; Array[a, 11] (* Jean-François Alcover, Oct 05 2015 *)
  • PARI
    a(n) = if(n<4, 1,if(n==4, 4,(a(n-1)/2 + sqrtint(a(n-1)))^2));
    vector(12, n, a(n)) \\ Altug Alkan, Oct 04 2015
  • Python
    def list_a(n):
        list=[1,1,1,4];root=2;length=4
        while length
    				

Formula

a(1)=1; for n>1, if s = a(1)+a(2)+...+a(n-1) then a(n+1) = floor((s+1)/2)^2.
a(1)+...+a(n) = A006892(n).
a(1)=a(2)=a(3)=1, a(4)=4; for n>=4, a(n+1) = ( a(n)/2+sqrt(a(n)) )^2.