This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262145 #12 Sep 27 2015 17:47:47 %S A262145 1,2,10,108,2214,75708,3895236,280356120,26824493574,3287849716332, %T A262145 501916845156012,93337607623037544,20766799390944491100, %U A262145 5446109742113077482456,1662395457873577922274888 %N A262145 O.g.f.: exp( Sum_{n >= 1} A000182(n+1)*x^n/n ), where A000182 is the sequence of tangent numbers. %C A262145 It appears that the sequence has integer entries. Calculation suggests the following conjecture: the expansion of exp( Sum_{n >= 1} A000182(n + m)*x^n/n ) has integer coefficients for m = 1, 2, 3, .... This is the case m = 1. Cf. A255881 and A255895. %C A262145 First row of square array A262144. %H A262145 P. Bala, <a href="/A100100/a100100.pdf">Notes on logarithmic differentiation, the binomial transform and series reversion</a> %F A262145 Recurrence: a(n) = 1/n * Sum_{k = 1..n} A000182(k+1)*a(n-k). %p A262145 #A262145 %p A262145 #define tangent numbers A000182 %p A262145 A000182 := n -> (1/2) * 2^(2*n) * (2^(2*n) - 1) * abs(bernoulli(2*n))/n: %p A262145 a := proc (n) option remember; %p A262145 if n = 0 then 1 else %p A262145 add(A000182(k+1)*a(n-k), k = 1 .. n)/n %p A262145 end if; %p A262145 end proc: %p A262145 seq(a(n), n = 0 .. 15); %t A262145 max = 15; CoefficientList[E^Sum[(-1)^n*2^(2*n+1)*(4^(n+1)-1)*BernoulliB[2*(n+1)]*x^n / (n*(n+1)), {n, 1, max}] + O[x]^max, x] (* _Jean-François Alcover_, Sep 18 2015 *) %o A262145 (Sage) %o A262145 def a_list(n): %o A262145 T = [0]*(n+2); T[1] = 1 %o A262145 for k in range(2, n+1): T[k] = (k-1)*T[k-1] %o A262145 for k in range(2, n+1): %o A262145 for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j] %o A262145 @cached_function %o A262145 def a(n): return sum(T[k+1]*a(n-k) for k in (1..n))//n if n> 0 else 1 %o A262145 return [a(k) for k in range(n)] %o A262145 a_list(15) # _Peter Luschny_, Sep 18 2015 %Y A262145 Cf. A000182, A255881, A255895, A262144 (first row). %K A262145 nonn,easy %O A262145 0,2 %A A262145 _Peter Bala_, Sep 13 2015