cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262152 Expansion of f(-x^6)^3 / (f(-x^4)^2 * psi(x)) in powers of x where phi(), f() are Ramanujan theta functions.

This page as a plain text file.
%I A262152 #16 Feb 16 2025 08:33:27
%S A262152 1,-1,1,-2,5,-6,4,-8,18,-20,16,-27,52,-58,47,-74,133,-146,127,-187,
%T A262152 312,-343,304,-431,687,-751,687,-941,1436,-1569,1459,-1948,2879,-3139,
%U A262152 2975,-3885,5569,-6071,5826,-7472,10457,-11385,11067,-13972,19122,-20813,20423
%N A262152 Expansion of f(-x^6)^3 / (f(-x^4)^2 * psi(x)) in powers of x where phi(), f() are Ramanujan theta functions.
%C A262152 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A262152 G. C. Greubel, <a href="/A262152/b262152.txt">Table of n, a(n) for n = 0..2500</a>
%H A262152 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A262152 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A262152 Expansion of q^(-7/24) * eta(q) * eta(q^6)^3 / (eta(q^2)^2 * eta(q^4)^2) in powers of q.
%F A262152 Euler transform of period 12 sequence [-1, 1, -1, 3, -1, -2, -1, 3, -1, 1, -1, 0, ...].
%e A262152 G.f. = 1 - x + x^2 - 2*x^3 + 5*x^4 - 6*x^5 + 4*x^6 - 8*x^7 + 18*x^8 + ...
%e A262152 G.f. = q^7 - q^31 + q^55 - 2*q^79 + 5*q^103 - 6*q^127 + 4*q^151 - 8*q^175 + ...
%t A262152 a[ n_] := SeriesCoefficient[ 2 x^(1/8) QPochhammer[ x^6]^3 / (QPochhammer[ x^4]^2 EllipticTheta[ 2, 0, x^(1/2)]), {x, 0, n}];
%o A262152 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^4 + A)^2), n))};
%o A262152 (PARI) q='q+O('q^99); Vec(eta(q)*eta(q^6)^3/(eta(q^2)^2*eta(q^4)^2)) \\ _Altug Alkan_, Jul 31 2018
%K A262152 sign
%O A262152 0,4
%A A262152 _Michael Somos_, Sep 13 2015