This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262153 #25 Sep 04 2025 00:54:10 %S A262153 5,1,6,9,4,2,8,1,9,8,0,5,6,4,0,3,8,4,2,4,0,5,1,6,6,0,8,4,7,9,8,5,6,2, %T A262153 7,7,9,7,8,5,4,6,9,4,7,9,1,3,0,9,1,2,4,1,6,5,0,2,8,0,2,4,5,8,7,1,2,3, %U A262153 8,0,7,5,3,4,1,1,3,6,0,3,7,7,1,9,8,1,8,0,2,8,0,5,4,0,2,5,0,8,8,2 %N A262153 Decimal expansion of Sum_{p prime} 1/(2^p-1), a prime equivalent of the Erdős-Borwein constant. %C A262153 Erdős was interested in the question whether this constant is irrational. - _Amiram Eldar_, Apr 30 2020 %C A262153 Pratt gives a conditional proof that this constant is irrational. - _Charles R Greathouse IV_, Sep 26 2024 %D A262153 Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdős, Cambridge University Press, 1990, p. 470. %H A262153 Thomas Bloom, <a href="https://www.erdosproblems.com/69">Is Sum+{n>=2} omega(n)/2^n irrational? (Here omega(n) counts the number of distinct prime divisors of n)</a>, Erdős Problems. %H A262153 Paul Erdős, <a href="https://users.renyi.hu/~p_erdos/1948-04.pdf">On arithmetical properties of Lambert series</a>, J. Indian Math. Soc. (N.S.), Vol. 12 (1948), pp. 63-66. %H A262153 Paul Erdős, <a href="https://users.renyi.hu/~p_erdos/1969-09.pdf">On the irrationality of certain series</a>, Math. Student, Vol. 36 (1969), pp. 222-226. %H A262153 Kyle Pratt, <a href="https://arxiv.org/abs/2409.15185">The irrationality of a prime factor series under a prime tuples conjecture</a>, arXiv:2409.15185 [math.NT], 2024. %H A262153 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see no. 69. %H A262153 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Erdos-BorweinConstant.html">Erdős-Borwein Constant</a>. %H A262153 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeConstant.html">Prime Constant</a>. %F A262153 Equals Sum_{i>=1} 1/A001348(i). - _R. J. Mathar_, Feb 17 2016 %F A262153 Equals Sum_{k>=1} omega(k)/2^k, where omega(k) is the number of distinct primes dividing k (A001221). - _Amiram Eldar_, Apr 30 2020 %e A262153 0.51694281980564038424051660847985627797854694791309124165028... %t A262153 digits = 100; m0 = 100; dm = 100; s[m_] := s[m] = N[Sum[1/(2^Prime[n]-1), {n, 1, m}], digits+10]; s[m = m0]; Print[{m, s[m]}]; s[m = m + dm]; While[ Print[{m, s[m]}]; RealDigits[ s[m], 10, digits+5] != RealDigits[ s[m - dm], 10, digits+5], m = m + dm]; RealDigits[ s[m], 10, digits] // First %o A262153 (PARI) suminf(k=1, omega(k)/2^k) \\ _Michel Marcus_, Apr 30 2020 %o A262153 (PARI) s=0.; forprime(p=2,bitprecision(1.)+1,s+=1./(2^p-1)); s \\ _Charles R Greathouse IV_, Sep 26 2024 %Y A262153 Cf. A051006, A065442. %K A262153 nonn,cons,changed %O A262153 0,1 %A A262153 _Jean-François Alcover_, Sep 13 2015