This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262176 #32 Mar 13 2025 08:55:10 %S A262176 3390,66570,70140,84810,132330,136710,222840,225750,242730,271770, %T A262176 288930,320010,330330,377370,390390,414330,463890,489960,505710, %U A262176 644670,758340,819390,830310,857010,895650,906540,908910,924810,952380,968520,974820 %N A262176 Numbers k such that k-17, k-1, k+1 and k+17 are consecutive primes. %C A262176 This is a subsequence of A014574 (average of twin prime pairs), A256753 and A249674 (30n). %H A262176 Karl V. Keller, Jr., <a href="/A262176/b262176.txt">Table of n, a(n) for n = 1..10000</a> %H A262176 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimes.html">Twin Primes</a> %e A262176 3390 is the average of the four consecutive primes 3373, 3389, 3391, 3407. %e A262176 66570 is the average of the four consecutive primes 66553, 66569, 66571, 66587. %t A262176 Select[Prime@ Range@ 50000, NextPrime[#, {1, 2, 3}] == {16, 18, 34} + # &] + 17 (* _Giovanni Resta_, Sep 14 2015 *) %o A262176 (Python) %o A262176 from sympy import isprime,prevprime,nextprime %o A262176 for i in range(0,3000001,6): %o A262176 if isprime(i-1) and isprime(i+1) and prevprime(i-1)==i-17 and nextprime(i+1)==i+17 : print (i,end=', ') %o A262176 (PARI) list(l)=for(i=1,l,my(p=prime(i)); if(p+16==prime(i+1) && p+18==prime(i+2) && p+34==prime(i+3), print1(p+17,", "))) \\ _Anders Hellström_, Sep 14 2015 %o A262176 (Perl) use ntheory ":all"; say $_+1 for grep { next_prime($_+2)-$_ == 18 && $_-prev_prime($_) == 16} @{twin_primes(1e9)}; # _Dana Jacobsen_, Oct 13 2015 %o A262176 (Perl) use ntheory ":all"; say $_+17 for grep { next_prime($_+0)-$_ == 16 && next_prime($_+18)-$_ == 34} sieve_prime_cluster(1,1e9,16,18,34); # _Dana Jacobsen_, Oct 13 2015 %Y A262176 Cf. A014574, A077800 (twin primes), A249674, A256753. %K A262176 nonn %O A262176 1,1 %A A262176 _Karl V. Keller, Jr._, Sep 13 2015