This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262242 #14 May 05 2021 16:55:05 %S A262242 3,6,10,36,66,136,528,2080,8256,32896,131328,524800,2098176,8390656, %T A262242 33558528,134225920,536887296,2147516416,8590000128,34359869440, %U A262242 137439215616,549756338176,2199024304128,8796095119360,35184376283136,140737496743936,562949970198528 %N A262242 Triangular numbers representable as 2^x + 2^y. %H A262242 Chai Wah Wu, <a href="/A262242/b262242.txt">Table of n, a(n) for n = 1..502</a> %F A262242 Conjectures from _Colin Barker_, Sep 16 2015: (Start) %F A262242 a(n) = 2^(n-5)*(2^n+4) for n>5. %F A262242 a(n) = 6*a(n-1)-8*a(n-2) for n>7. %F A262242 G.f.: x*(240*x^6+28*x^5-70*x^4+24*x^3-2*x^2-12*x+3) / ((2*x-1)*(4*x-1)). %F A262242 (End) %o A262242 (Python) %o A262242 def isTriangular(a): %o A262242 sr = 1 << (int.bit_length(a) >> 1) %o A262242 a += a %o A262242 while a < sr*(sr+1): sr>>=1 %o A262242 b = sr>>1 %o A262242 while b: %o A262242 s = sr+b %o A262242 if a >= s*(s+1): sr = s %o A262242 b>>=1 %o A262242 return (a==sr*(sr+1)) %o A262242 for a in range(1,200): %o A262242 for b in range(a): %o A262242 c = (1<<a) + (1<<b) %o A262242 if isTriangular(c): print(str(c), end=',') %Y A262242 Cf. A000217, A225390, A226499, A227027, A259745, A259746. %K A262242 nonn %O A262242 1,1 %A A262242 _Alex Ratushnyak_, Sep 15 2015