This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262250 #50 Oct 13 2015 16:44:30 %S A262250 3,7,23,29,41,43,47,53,59,61,67,83,89,223,227,229,241,251,257,263,269, %T A262250 281,283,401,409,421,443,449,457,461,463,467,487,503,509,521,523,541, %U A262250 547,557,563,569,587,601,607,641,643,647,653,659,661,683,809,821,823,827,829,853,857,859,863,881,883,887,2003,2027,2029,2053 %N A262250 Primes having exactly one digit in {1, 3, 7, 9}. %C A262250 How can one prove that the sequence is infinite? %C A262250 Probabilistic arguments imply that the number of terms not exceeding x is not less than 5/9*log(10)/log(6)*x^(log(6)/log(10))/log(x) = 0.7139...*x^0.778.../log(x). %H A262250 Charles R Greathouse IV, <a href="/A262250/b262250.txt">Table of n, a(n) for n = 1..10000</a> %t A262250 Select[Prime@ Range@ 310, Total@ Drop[First /@ Partition[DigitCount@ #, 2, 2], {3}] == 1 &] (* _Michael De Vlieger_, Sep 21 2015 *) %o A262250 (PARI) nbd(vd, d) = #select(i->(i == d), vd); %o A262250 lista(nn) = {forprime(p=2, nn, vd = digits(p); if (nbd(vd,1) + nbd(vd,3) + nbd(vd,7) + nbd(vd,9) == 1, print1(p, ", ")););} \\ _Michel Marcus_, Sep 22 2015 %o A262250 (PARI) list(lim)=my(v=List([3])); forprime(p=7,lim, if(#setintersect(Set(digits(p\10)), [1,3,7,9])==0, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Sep 22 2015 %o A262250 (Perl) use ntheory ":all"; say join ", ", grep { tr/1379// == 1 } @{primes(3000)}; # _Dana Jacobsen_, Oct 13 2015 %Y A262250 Cf. A000040, A029743. %K A262250 nonn,base %O A262250 1,1 %A A262250 _Vladimir Shevelev_, Sep 21 2015