This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A262257 #10 Feb 16 2025 08:33:27 %S A262257 0,0,0,0,0,0,0,0,0,0,2,0,1,1,1,1,1,1,1,1,2,1,0,1,1,1,1,1,1,1,2,2,1,0, %T A262257 1,1,1,1,1,1,2,2,2,1,0,1,1,1,1,1,2,2,2,2,1,0,1,1,1,1,2,2,2,2,2,1,0,1, %U A262257 1,1,2,2,2,2,2,2,1,0,1,1,2,2,2,2,2,2 %N A262257 Minimal number of editing steps (delete, insert or substitute) to transform n in decimal representation into the largest palindrome <= n. %C A262257 a(n) = Levenshtein distance between n and A261423(n); %C A262257 0 <= a(n) <= A055642(n); %C A262257 a(A002113(n)) = 0; a(m) = 0 iff A136522(m) = 1. %H A262257 Reinhard Zumkeller, <a href="/A262257/b262257.txt">Table of n, a(n) for n = 0..10000</a> %H A262257 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A262257 WikiBooks: Algorithm Implementation, <a href="http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance">Levenshtein Distance</a> %H A262257 Wikipedia, <a href="http://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein Distance</a> %H A262257 Wikipedia, <a href="http://www.wikipedia.org/wiki/Palindromic_number">Palindromic number</a> %H A262257 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %e A262257 . n | A261423(n) | a(n) n | A261423(n) | a(n) %e A262257 . -----+------------+----- ------+------------+------- %e A262257 . 100 | 99 | 3 1000 | 999 | 4 %e A262257 . 101 | 101 | 0 1001 | 1001 | 0 %e A262257 . 102 | 101 | 1 1002 | 1001 | 1 %e A262257 . 103 | 101 | 1 1003 | 1001 | 1 %e A262257 . 104 | 101 | 1 1004 | 1001 | 1 %e A262257 . 105 | 101 | 1 1005 | 1001 | 1 %e A262257 . 106 | 101 | 1 1006 | 1001 | 1 %e A262257 . 107 | 101 | 1 1007 | 1001 | 1 %e A262257 . 108 | 101 | 1 1008 | 1001 | 1 %e A262257 . 109 | 101 | 1 1009 | 1001 | 1 %e A262257 . 110 | 101 | 2 1010 | 1001 | 2 %e A262257 . 111 | 111 | 0 1011 | 1001 | 1 %e A262257 . 112 | 111 | 1 1012 | 1001 | 2 %e A262257 . 113 | 111 | 1 1013 | 1001 | 2 %e A262257 . 114 | 111 | 1 1014 | 1001 | 2 %e A262257 . 115 | 111 | 1 1015 | 1001 | 2 %e A262257 . 116 | 111 | 1 1016 | 1001 | 2 %e A262257 . 117 | 111 | 1 1017 | 1001 | 2 %e A262257 . 118 | 111 | 1 1018 | 1001 | 2 %e A262257 . 119 | 111 | 1 1019 | 1001 | 2 %e A262257 . 120 | 111 | 2 1020 | 1001 | 2 %e A262257 . 121 | 121 | 0 1021 | 1001 | 1 %e A262257 . 122 | 121 | 1 1022 | 1001 | 2 %e A262257 . 123 | 121 | 1 1023 | 1001 | 2 %e A262257 . 124 | 121 | 1 1024 | 1001 | 2 %e A262257 . 125 | 121 | 1 1025 | 1001 | 2 . %o A262257 (Haskell) %o A262257 import Data.Function (on); import Data.List (genericIndex) %o A262257 a262257 n = genericIndex a262257_list n %o A262257 a262257_list = zipWith (levenshtein `on` show) [0..] a261423_list where %o A262257 levenshtein us vs = last $ foldl transform [0..length us] vs where %o A262257 transform xs@(x:xs') c = scanl compute (x+1) (zip3 us xs xs') where %o A262257 compute z (c', x, y) = minimum [y+1, z+1, x + fromEnum (c' /= c)] %Y A262257 Cf. A261423, A002113, A136522, A055642. %K A262257 nonn,base %O A262257 0,11 %A A262257 _Reinhard Zumkeller_, Sep 16 2015